摘要:
This disclosure describes systems, methods, and devices related to over-puncture mitigation. A device may generate a frame comprising a payload having a payload size associated with a number of bits. The device may determine a low-density parity-check (LDPC) codeword size based on the payload size. The device may calculate a number of codewords based on the payload size. The device may calculate a number of shortening bits and a number of LDPC padding bits based on the number of codewords. The device may calculate a number of orthogonal frequency division multiplexing (OFDM) symbols for containing the number of codewords. The device may cause to send the frame with the number of OFDM symbols to a station device.
摘要:
This disclosure describes systems, methods, and devices related to extremely high throughput (EHT) trigger based (TB) preamble. A device may receive a trigger frame from an associated access point (AP), wherein the trigger frame comprises one or more resource unit (RU) bandwidths (BWs) allocated to the device. The device may generate an EHT physical layer protocol data unit (PPDU) based on receiving the trigger frame from the access point, wherein the PPDU comprises an EHT preamble that includes a signaling (U-SIG) field. The device may encode the U-SIG field with an indication of one or more resource unit (RU) bandwidth (BW) allocations to be used for sending the PPDU to the AP, wherein the indication is a value associated with a first option of one or more options of selectable RU BWs. The device may cause to send the PPDU to the AP and an uplink data transmission direction.
摘要:
Embodiments provide a new short beacon frame format and its operation with full beacon frame transmissions for wireless communications devices. Many embodiments comprise a medium access control (MAC) sublayer logic to build frames comprising the short beacon frame for a first communications device. In some embodiments, the MAC sublayer may determine a frame control field comprising a type field indicative of an extension frame and a subtype indicative of a short beacon. In further embodiments, the frame control field may comprise a service set identifier (SSID) control field, and a reserved field. Some embodiments may store the short beacon frame or frame format in memory, in logic, or in another manner that facilitates transmission of the short beacon frames. Some embodiments may receive and detect communications with the short beacon frames. Further embodiments may generate and transmit a communication with the short beacon frames.
摘要:
Generally discussed herein are devices and methods for providing devices with packet duration and/or transmit and/or receive time frame information. An apparatus can include processing circuitry and transceiver circuitry configured to generate a packet for transmission on one or more sub-channels for one or more stations, each sub-channel comprising a common wake-up physical synchronization, a station dedicated wake-up preamble, and a packet length, wherein each station dedicated wake-up preamble comprises a wake-up identifier for a station of the one or more stations and the packet length indicates a duration of the packet, and wherein a station of the one or more stations includes a receive bandwidth of less than twenty megaHertz, and transmit the packet to the one or more stations during a transmission opportunity (TXOP) obtained by the AP.
摘要:
Devices and techniques for dynamic patterned resource allocation in a wireless network are described herein. Components of a wireless station may obtain a set of dynamic patterns, where members of the set define a sequence of resource units for the wireless network. The components may receive a data unit from an access point of the wireless network, the data unit including a group designation for the wireless station. The components may select one of the set of dynamic patterns based on the received group designation and communicate on the wireless network using resource units specified by the selected dynamic pattern.
摘要:
Embodiments of an access point (AP), user station (STA), and method for variable length encoding are generally described herein. The AP may encode a block of input bits according to a parity check matrix to produce a low density parity check (LDPC) codeword. The parity check matrix may be included in a group of candidate parity check matrixes that includes a base parity check matrix and an expanded parity check matrix. An LDPC codeword length may be smaller for the base parity check matrix than for the expanded parity check matrix. The base parity check matrix may be used for the encoding when the LDPC codeword is transmitted for a legacy user station (STA). The expanded parity check matrix may be used when the LDPC codeword is transmitted for a non-legacy STA.
摘要:
Methods, apparatuses, and computer readable media for signaling high-efficiency packet formats using a legacy portion of the preamble in wireless local-area networks are disclosed. A high-efficiency (HE) wireless local area network (HEW) device including circuitry is disclosed. The circuitry may be configured to generate a HE packet comprising a legacy signal field (L-SIG) followed by one or more HE signal fields, and configure the L-SIG to signal to a second HEW device either a first packet format of the HE packet or a second packet format of the HE packet, where a length of the L-SIG modulo 3 is used to signal the first packet format or the second packet format. The circuitry may be configured to generate a duplicated L-SIG field with a polarity difference to indicate a third packet configuration of the HE packet or a fourth packet configuration of the HE packet.
摘要:
Wireless devices, methods, and computer readable media are disclosed. A high-efficiency wireless local-area network (HEW) master station is disclosed. The HEW master station may include circuitry. The circuitry may be configured to generate one or more resource allocations of a bandwidth for one or more HEW stations. Each resource allocation for a first portion of the bandwidth may be a multiple of a basic resource allocation or the entire first portion of the bandwidth. There may be only one resource allocation for a second portion of the bandwidth that is at least as large as the first portion of the bandwidth. In some embodiments, each resource allocation for the second portion of the bandwidth may be a multiple of the basic resource allocation or the entire second portion of the bandwidth.
摘要:
Wireless devices, methods, and computer readable media for synchronization in a wireless local-area network. A method on a wireless communication device may include tuning to a first subchannel based on a schedule received from an access point (AP) the schedule to indicate that the HEW device is assigned to the first subchannel. The method may further include determining a target beacon receive time and tuning to a second subchannel to receive the target beacon at the target beacon receive time. The method may further include receiving the target beacon on the second subchannel and tuning back to the first subchannel. A method on an AP for synchronization may include transmitting information that indicates a target beacon receive time on a subchannel. The method may include not transmitting to a wireless communication device operating on a second subchannel for a period of time before the target beacon receive time, and transmitting a target beacon on a first subchannel at the target beacon receive time.
摘要:
Embodiments of a system and methods for distinguishing high-efficiency Wi-Fi (HEW) packets from legacy packets are generally described herein. In some embodiments, an access point may select a value for the length field of a legacy signal field (L-SIG) that is non-divisible by three for communicating with HEW stations and may select a value for the length field that is divisible by three for communicating with legacy stations. In some embodiments, the access point may select a phase rotation for application to the BPSK modulation of at least one of the first and second symbols of a subsequent signal field to distinguish a high-throughput (HT) PPDU, a very-high throughput (VHT) PPDU and an HEW PPDU.