Abstract:
A medical device system performs a method determining presence of scar tissue. Torso-surface potential signals are received by a processor from multiple electrodes distributed on a torso of a patient. The processor extracts features of the potential signal from each electrode and stores values of the features in a non-transitory storage medium. The processor determines a scar indicator index for each of the electrodes from the stored features and identifies which ones of the electrodes have an affirmative scar indicator index. An overall scar burden index is determined as a proportion of the electrodes with an affirmative scar indicator index.
Abstract:
An exemplary computer-implemented method is disclosed for detection of onset of depolarization on far-field electrograms (EGMs) or electrocardiogram (ECG)-or ECG-like signals. The method includes determining a baseline rhythm using a plurality of body-surface electrodes. The baseline rhythm includes an atrial marker and a ventricular marker. A pre-specified window is defined as being between the atrial marker and the ventricular marker. A low pass filter is applied to a signal within the window. A rectified slope of the signal within the window is determined. A determination is made as to whether a time point (t1) is present such that the rectified slope exceeds 10% of a maximum value of the rectified slope. A point of onset of a depolarization complex in the signal is determined. The point of onset occurs at a largest curvature in the signal within the window.
Abstract:
A method and system of cardiac pacing is disclosed. A baseline rhythm is determined. The baseline rhythm includes a baseline atrial event and a baseline right ventricular RV event from an implanted cardiac lead or a leadless device, a pre-excitation interval determined from the baseline atrial event and the baseline RV event, and a plurality of activation times determined from a plurality of body-surface electrodes. A determination is made as to whether a time interval measured from an atrial event to a RV event is disparate from another time interval measured from the atrial event to an earliest RV activation time of the plurality of activation times. A correction factor is applied to the pre-excitation interval to obtain a corrected pre-excitation interval in response to determining the RV event is disparate from the earliest RV activation time. The processor is configured to signal the pulse generator to deliver electrical stimuli to a left ventricle (LV) using the corrected pre-excitation interval before RV sensing time.
Abstract:
A method and system of cardiac pacing is disclosed. A baseline rhythm is determined. The baseline rhythm includes a baseline atrial event and a baseline right ventricular RV event from an implanted cardiac lead or a leadless device, a pre-excitation interval determined from the baseline atrial event and the baseline RV event, and a plurality of activation times determined from a plurality of body-surface electrodes. A determination is made as to whether a time interval measured from an atrial event to a RV event is disparate from another time interval measured from the atrial event to an earliest RV activation time of the plurality of activation times. A correction factor is applied to the pre-excitation interval to obtain a corrected pre-excitation interval in response to determining the RV event is disparate from the earliest RV activation time. The processor is configured to signal the pulse generator to deliver electrical stimuli to a left ventricle (LV) using the corrected pre-excitation interval before RV sensing time.
Abstract:
The present disclosure relates to cardiac evoked response detection and, more particularly, reducing polarization effects in order to detect an evoked response following delivery of a stimulation pulse. An implantable medical device (IMD) is configured to deliver a ventricular pacing pulse. A signal is sensed in response to the ventricular pacing stimulus. A window is placed over the sensed signal to obtain a set of data from the signal after a paced event. The set of data extracted from the sensed signal comprises a maximum amplitude, a maximum time associated with the maximum amplitude, a minimum amplitude, and a minimum time associated with the minimum amplitude. Responsive to processing the extracted data, the window is delayed to avoid polarization effects. A determination is then made as to whether the ventricular pacing stimulus is capturing the paced ventricle in response to determining whether the maximum time is greater than the minimum time.
Abstract:
The present disclosure pertains to cardiac pacing methods and systems, and, more particularly, to cardiac resynchronization therapy (CRT). In particular, the present disclosure pertains to determining whether a patient is experiencing atrial fibrillation (AF). If the patient is experiencing AF, the efficacy of CRT is determined. A signal is sensed in response to a ventricular pacing stimulus. Through signal processing, a number of features are parsed from the signal and a determination is made as to whether the ventricular pacing stimulus evoked a response from the ventricle.
Abstract:
The present disclosure pertains to cardiac pacing methods and systems, and, more particularly, to cardiac resynchronization therapy (CRT). In particular, the present disclosure pertains to determining the efficacy of CRT through use of an effective capture test (ECT). One or more embodiments comprises sensing a signal in response to a ventricular pacing stimulus. Through signal processing, a number of features are parsed from the signal. Exemplary features parsed from the signal include a maximum amplitude, a maximum time associated with the maximum amplitude, a minimum amplitude, and a minimum time associated with the minimum amplitude. The data is evaluated through use of the ECT. By employing the ECT, efficacy of CRT is easily and automatically evaluated.
Abstract:
The present disclosure pertains to cardiac pacing methods and systems, and, more particularly, to cardiac resynchronization therapy (CRT). In particular, the present disclosure pertains to determining the efficacy of CRT through use of an effective capture test (ECT). One or more embodiments comprises sensing a signal in response to a ventricular pacing stimulus. Through signal processing, a number of features are parsed from the signal. Exemplary features parsed from the signal include a maximum amplitude, a maximum time associated with the maximum amplitude, a minimum amplitude, and a minimum time associated with the minimum amplitude. The data is evaluated through use of the ECT. By employing the ECT, efficacy of CRT is easily and automatically evaluated.
Abstract:
Methods and/or devices may be configured to track effectiveness of pacing therapy by monitoring two or more electrical vectors of the patient's heart during pacing therapy and analyzing at least one feature of a morphological waveform within each of the two or more electrical vectors.
Abstract:
Generally, the disclosure is directed one or more methods or systems of cardiac pacing employing a right ventricular electrode and a plurality of left ventricular electrodes. Pacing using the right ventricular electrode and a first one of the left ventricular electrodes and measuring activation times at other ones of the left ventricular electrodes. Pacing using the right ventricular electrode and a second one of the ventricular electrodes and measuring activation times at other ones of the left ventricular electrodes. Computing a first degree of resynchronization based on a sum of differences of activation times and corresponding activation times. Pacing using the right ventricular electrode and a second one of the ventricular electrodes and measuring activation times at other ones of the left ventricular electrodes. Computing a second degree of resynchronization based on the sum of differences of activation times and corresponding activation times. Selecting one of the left ventricular electrodes for delivery of subsequent pacing pulses based on the computed degrees of resynchronization.