Abstract:
A detector made of lanthanum-doped lead zirconate titanate detects intensity of ultraviolet light radiated inside of a vehicle. The detector sends ultrasonic wave to an incidence direction of ultraviolet light, and detects ultrasonic wave reflected by an object. An electrical unit determines the object to be an occupant of the vehicle or not based on the reflected ultrasonic wave. The electrical unit outputs a signal representing that a predetermined or more amount of ultraviolet light is radiated to the occupant, when the detector detects the predetermined or more amount of ultraviolet light and when the electrical unit determines the object to be the occupant.
Abstract:
An ultrasonic sensor includes a plurality of vibrating parts, a plurality of receiving elements, and a waveguide. Each of the vibrating parts vibrates when a corresponding ultrasonic wave reflected by a detection object is transmitted thereto, and receives the ultrasonic wave. Each of the elements includes corresponding one of the vibrating parts and detects the object using the corresponding ultrasonic wave. The ultrasonic wave is transmitted through the waveguide to each of the elements. The waveguide includes a first opening facing the object, a second opening, and a reflecting surface that reflects the ultrasonic wave in a direction to each of the vibrating parts. The ultrasonic wave enters through the first opening. The second opening is not viewable from the first opening. The second opening holds the elements such that the each of the vibrating parts faces a direction where the each of the vibrating parts receives the ultrasonic wave.
Abstract:
An ultrasonic sensor is provided with a substrate unit where a thin-walled portion is arranged and a piezoelectric oscillator which is formed at the substrate unit. The piezoelectric oscillator includes two electrodes and a piezoelectric film positioned between the two electrodes. The thin-walled portion and the piezoelectric oscillator construct a membrane structure which will resonate at a predetermined frequency.
Abstract:
A motor-assisted turbocharger is composed of a turbine driven by energy of exhaust gas, a compressor rotated by the turbine and a rotary electric machine for assisting rotation of the compressor. The turbine, the compressor and the rotary electric machine are connected to each other by a common rotating shaft. A polygon nut having magnetic member facing fixed magnetic sensor is connected to an axial end of the rotating shaft. A magnetic field formed between the magnetic member and the magnetic sensor changes according to rotation of the rotating shaft. A rotational speed and a rotational position (or angle) of the compressor are detected based on the changes in the magnetic field. Operation of the turbocharger is electronically controlled based on the detected rotational speed and the rotational position.
Abstract:
An ultrasonic sensor for detecting an object includes: a substrate; a transmission device for transmitting an ultrasonic wave; a plurality of reception devices for receiving the ultrasonic wave; and a circuit for processing received ultrasonic waves, which are received by the reception devices after the ultrasonic wave transmitted from the transmission device is reflected by the object. The transmission device and the reception devices are integrated into the substrate. The dimensions of the sensor are minimized, and detection accuracy of the sensor is improved.
Abstract:
An ultrasonic element has a membrane formed as a thin walled portion of a substrate, on which a piezoelectric vibrator is formed. The piezoelectric vibrator comprises a piezoelectric thin film and metal electrode films, which are formed into a sandwiched structure. The piezoelectric vibrator resonates with the membrane at a predetermined ultrasonic wave-band frequency. A hollow-out pattern is formed in the piezoelectric thin film to divide the piezoelectric vibrator into multiple portions, wherein the hollow-out pattern is formed in such an area corresponding to stress concentrated area which appears in vibrations of the membrane in diametrical directions thereof. The membrane is made to be easily deformed in response to vibration of the piezoelectric vibrator, so that an ultrasound of a higher sound pressure can be emitted.
Abstract:
An optical scanner is provided with a laser diode for emitting a laser beam, a cylinder lens arranged in a laser route of the laser beam, and a static electricity force driving device (or electromagnetic force driving device) for moving the cylinder lens in a direction perpendicular to the laser route. Thus, the incidence position of the laser beam with respect to the cylinder lens is changeable. Accordingly, the laser beam having entered the cylinder lens is refracted at different refraction angles to be dispersed, thus being capable of scanning an object.
Abstract:
A pedestrian detection device, a related method, an air bag system and a vehicle are disclosed. The pedestrian detection device 20 includes an infrared ray sensor 30A, which detects a temperature of a detection object approaching to or in contact with the vehicle 10 to provide a temperature signal, an impact sensor 27a to 27c, which generate impact signals when the vehicle encounters a collision, and an impact collision generation unit 21 operative to generate a pedestrian collision signal upon discrimination that the detection object is a pedestrian, discrimination that the impact signal is being outputted, and discrimination that a direction in which the pedestrian is present and a direction in which the impact is applied to the vehicle falls in a substantially same direction.