摘要:
One embodiment of the present invention provides a system that supports space and time dimensional program execution by facilitating accesses to different versions of a memory element. The system supports a head thread that executes program instructions and a speculative thread that executes program instructions in advance of the head thread. The head thread accesses a primary version of the memory element, and the speculative thread accesses a space-time dimensioned version of the memory element. During a reference to the memory element by the head thread, the system accesses the primary version of the memory element. During a reference to the memory element by the speculative thread, the speculative thread accesses a pointer associated with the primary version of the memory element, and accesses a version of the memory element through the pointer. Note that the pointer points to the space-time dimensioned version of the memory element if the space-time dimensioned version of the memory element exists. In one embodiment of the present invention, the pointer points to the primary version of the memory element if the space-time dimensioned version of the memory element does not exist.
摘要:
A system is provided that facilitates space and time dimensional execution of computer programs through selective versioning of memory elements located in a system heap. The system includes a head thread that executes program instructions and a speculative thread that simultaneously executes program instructions in advance of the head thread with respect to the time dimension of sequential execution of the program. The collapsing of the time dimensions is facilitated by expanding the heap into two space-time dimensions, a primary dimension (dimension zero), in which the head thread operates, and a space-time dimension (dimension one), in which the speculative thread operates. In general, each dimension contains its own version of an object and objects created by the thread operating in the dimension. The head thread generally accesses a primary version of a memory element and the speculative thread generally accesses a corresponding space-time dimensioned version of the memory element. During a write by the head thread, the system performs the write to all dimensions of the memory element. Note that if the dimensions are collapsed at this address a single update will update all time dimensions. It also checks status information associated with the memory element to determine if the memory element has been read by the speculative thread. If so, the system causes the speculative thread to roll back so that the speculative thread can read a result of the write operation.
摘要:
A computer processor pipeline has both an architectural register file and a working register file. The lifetime of an entry in the working register file is determined by a predetermined number of instructions passing through a specified stage in the pipeline after the location in the working register file is allocated for an instruction. The size of the working register file is selected based upon performance characteristics. A working register file creditor indicator is coupled to the front end pipeline portion and to the back end pipeline portion. The working register file credit indicator is monitored to prevent a working register file overflow. When the a location in the architectural register file is read early, the location is monitored to determine whether the location is written to prior to issuance of the instruction associated with the early read.
摘要:
A computer processor pipeline has both an architectural register file and a working register file. The lifetime of an entry in the working register file is determined by a predetermined number of instructions passing through a specified stage in the pipeline after the location in the working register file is allocated for an instruction. The size of the working register file is selected based upon performance characteristics. A working register file creditor indicator is coupled to the front end pipeline portion and to the back end pipeline portion. The working register file credit indicator is monitored to prevent a working register file overflow. When the a location in the architectural register file is read early, the location is monitored to determine whether the location is written to prior to issuance of the instruction associated with the early read.
摘要:
Embodiments of the present invention provide a system that executes program code in a processor. The system starts by executing the program code in a normal mode using a primary strand while concurrently executing the program code ahead of the primary strand using a subordinate strand in a scout mode. Upon resolving a branch using the subordinate strand, the system records a resolution for the branch in a speculative branch resolution table. Upon subsequently encountering the branch using the primary strand, the system uses the recorded resolution from the speculative branch resolution table to predict a resolution for the branch for the primary strand. Upon determining that the resolution of the branch was mispredicted for the primary strand, the system determines that the subordinate strand mispredicted the branch. The system then recovers the subordinate strand to the branch and restarts the subordinate strand executing the program code.
摘要:
One embodiment of the present invention provides a system that supports different modes of multi-threaded speculative execution on a processor. The system starts with two or more threads executing in a first multi-threaded speculative-execution mode. The system then switches to a second multi-threaded speculative-execution mode by configuring circuits in the processor to enable a second multi-threaded speculative-execution mode. After configuring the circuits, the system next switches the threads from executing in the first multi-threaded speculative-execution mode to executing in the second multi-threaded speculative-execution mode.
摘要:
One embodiment of the present invention provides a processor which selectively fetches cache lines for store instructions during speculative-execution. During normal execution, the processor issues instructions for execution in program order. Upon encountering an instruction which generates a launch condition, the processor performs a checkpoint and begins the execution of instructions in a speculative-execution mode. Upon encountering a store instruction during the speculative-execution mode, the processor checks an L1 data cache for a matching cache line and checks a store buffer for a store to a matching cache line. If a matching cache line is already present in the L1 data cache or if the store to a matching cache line is already present in the store buffer, the processor suppresses generation of the fetch for the cache line. Otherwise, the processor generates a fetch for the cache line.
摘要:
One embodiment of the present invention provides a system that avoids write-after-read (WAR) hazards while speculatively executing instructions on a processor. The system starts in a normal execution mode, wherein the system issues instructions for execution in program order. Upon encountering an unresolved data dependency during execution of an instruction, the system generates a checkpoint, defers the instruction, and executes subsequent instructions in an execute-ahead mode, wherein instructions that cannot be executed because of unresolved data dependencies are deferred, and wherein other non-deferred instructions are executed in program order. While deferring the instruction, the system stores the instruction along with any resolved source operands for the instruction into a deferred buffer.
摘要:
One embodiment of the present invention provides a system that facilitates deferring execution of instructions with unresolved data dependencies as they are issued for execution in program order. During a normal execution mode, the system issues instructions for execution in program order. Upon encountering an unresolved data dependency during execution of an instruction, the system generates a checkpoint that can subsequently be used to return execution of the program to the point of the instruction. Next, the system executes subsequent instructions in an execute-ahead mode, wherein instructions that cannot be executed because of an unresolved data dependency are deferred, and wherein other non-deferred instructions are executed in program order.
摘要:
One embodiment of the present invention provides a system that fixes bit errors encountered during references to a cache memory. During execution of an application, the system performs a reference to the cache memory by retrieving a data item and an associated error-correcting code from the cache memory. Next, the system computes an error-correcting code from the retrieved data item and compares the computed error-correcting code with the associated error-correcting code. If the computed error-correcting code does not match the associated error-correcting code a bit error has occurred. In this case, the system stores an identifier for the reference in a register within a set of one or more registers associated with the cache memory, so that the bit error can be fixed at a later time. The system also allows the application to continue executing.