Abstract:
The present invention relates to methods and arrangements for controlling uplink transmit power to be used by the UE. The UE comprises multiple radio interfaces wherein at least one of the multiple interfaces is a cellular radio interface. The UE stores information comprising a total transmit power budget set aside for use over the multiple radio interfaces of the UE and receives transmit power control commands from a network node on the cellular radio interface indicating whether the UE should increase or decrease or maintain the uplink transmit power on the cellular radio interface. Transmit power levels to be used for uplink transmissions over the multiple radio interfaces based on the received transmit power control commands are calculated, wherein the said total transmit power budget for the multiple radio interfaces is taken into account.
Abstract:
When a high SIR can be achieved for downlink data transmission, for example in a MIMO system, or when higher order modulation, such as 64 QAM, can be used, it is desired to measure the instantaneous downlink channel quality indicator (CQI), and report the measured CQI to the network using the same number of bits as when a lower SIR can be achieved. In order to do this, a true CQI is derived based upon at least one network controlled parameter and a measured channel quality parameter; and the true CQI value is scaled to a new CQI value such that the new CQI will fall within a specified range of CQI values; so that the new CQI achieved by scaling the derived CQI value can be reported with every CQI value over the entire reporting range requiring the same number of bits.
Abstract:
In deployments where there is a mixture of new Node Bs capable of uplink multi-antenna transmission and legacy Node Bs not capable of uplink multi-antenna transmission some embodiments described herein enable a network node (e.g. a radio network controller, RNC) to configure an uplink control channel (e.g. dedicated physical control channel, DPCCH) to be decodable by both the new and the legacy Node 8s when the UE operates in uplink multi-antenna transmission.
Abstract:
The present invention relates to cellular system and especially to handover between cells on different frequency carriers in an OFDM system or between cells in 2 systems adopting different radio access technologies (RAT), at least one of them being OFDM technology. A problem is the intra-cell interference impact on the quality a connected mode terminal measures in the own cell and in neighbor cells. This is a problem for cells based on OFDM technology, because intra-cell interference has no impact as compared to the inter-cell interference on the quality provided by the cell to a connected mode terminal, whereas in UTRA the intra-cell and inter-cell interference have the same impact on the quality provided. The solution to the problem is based on the insight that for cells that are located on the same site, the eNode B possess information on the power transmitted on the respective frequency carrier, and can adjust the quality as reported from the terminal on co-located OFDM cells. The adjusted quality measure enables an improved evaluation of the quality of co-located cells, for a potential handover. The invention also relates to embodiments on a 2-step handover, wherein handover to inter-frequency, or inter-RAT cell on another site is made as a handover to co-located inter-frequency/inter-RAT cell and a handover to an intra-frequency cell located at the other site.
Abstract:
The invention provides a method and a network node for controlling configuration of measurements to be performed by a user equipment (150a, 150b) operating in a wireless communication system (101). A configured measurement corresponds to at least one reporting criteria and the user equipment (150a, 150b) is able to support a limited number of parallel reporting criteria. Measurements to be performed by the user equipment in parallel may be requested by different network nodes such as a positioning server (140) and an eNodeB (110a, 110b). By letting a network node, such as the positioning server (140) or the (eNodeB 110a, 110b), obtain information on measurements requested by another network node the network node is able to configure the user equipment with a set of measurements that does not exceed at least one predetermined threshold for parallel reporting criteria
Abstract:
A radio network resource controller directs a first network node associated with a first cell region, or a wireless terminal in communication through the first cell region, to measure and report radio resource-related data selected from the group consisting of: resource activity per channel; the number of transmitted power samples that exceed a threshold over a measurement period; and, channel quality samples that exceed a quality threshold. The controller then receives at least one measurement report of the radio resource-related data and, as a function of the radio resource-related data in the first cell region, dynamically reallocates the distribution of resources, such as radio-frequency channels, between the first cell region and at least a second cell region. The invention has a particular advantage in TDD mode of operation where efficient and dynamic interference mitigation is needed to combat the inherent mobile-to-mobile and base station-to-base station interference.
Abstract:
A home base station (HBS) (104, 801) performs radio channel measurements to detect one or more user equipments (UEs) (107) not served by the HBS which may be in a potentially interfering environment caused at least in part by the HBS. A database (812) of historical channel data (channel fingerprinting) of the HBS coverage area is used to predict the channel conditions and expected interference signal power seen by the detected UE(s). Based on a combination of the radio measurements (813) and historical channel data, the HBS can accurately and adaptively reduce its transmit power to a level that reduces or eliminates interference with the detected UE(s), while also not significantly degrading communication quality between other UEs served by the HBS.
Abstract:
The invention relates to a method in a radio base station and user equipment, and comprises varying the transmitted timings of the HARQ feedback signaling such that only users with orthogonal pre-coding vectors (W) are scheduled simultaneously, to reduce multi-user interference and to ensure that said signaling is received by a transmitter before the start of the next retransmission.
Abstract:
A method of operating a terminal of a wireless communication network is disclosed. The wireless communication network comprises one or more wireless network nodes having at least first and second downlink transmission modes, the first downlink transmission mode comprising normal operation of a particular network node and being applicable when a number of active terminals in a cell associated with the particular network node is greater than a first mode threshold value, and the second downlink transmission mode comprising restricted downlink transmission of the particular network node and being applicable when the number of active terminals in the cell associated with the particular network node is less than or equal to a second mode threshold value. The method comprises detecting a cell identity for a cell associated with a wireless network node of the wireless communication system, detecting a current downlink transmission mode of the wireless network node as the first or second downlink transmission mode, and adapting a further operation of the terminal based on the detected current downlink transmission mode. Corresponding computer program product and arrangement are also disclosed.
Abstract:
A networks node generates an inter-frequency neighbor list of neighbor cells intended to be measured including neighbor cells satisfying an alignment condition and a sufficient measurement time. The alignment condition is satisfied when subframes of a first signal having a first frequency transmitted via a reference cell associated with the user equipment are synchronized with, have a known offset relative to or have a random offset smaller than one half of a sub frame relative to corresponding subframes of a second signal having a second frequency transmitted via a neighboring cells. The sufficient measurement time is determined by an overlap of measurement gaps and positioning subframes in the second signal. The user equipment performs the inter-frequency Reference Signal Time Difference (RSTD) measurements during measurement gaps.