Abstract:
Aspects of the present disclosure describe distributed optical fiber sensing systems, methods, and structures that advantageously employ point sensors that send sensory data/information over an attached, distributed optical fiber sensor without using a separate network or communications facility.
Abstract:
Disclosed are improved distributed optical fiber sensing systems, methods, and structures employing disparate point sensors that utilize uni-directional signal transmission via the distributed optical fiber such that a separate communications network for the disparate point sensors is not required.
Abstract:
Aspects of the present disclosure describe systems, methods and structures for distributed fiber sensing systems including interrogator and attached fiber in which the interrogator includes a common line card and function-specific, pluggable front end in which the line card is configurable and supports different signal processing paths and automatically senses the front-end type and uses corresponding firmware/software or signal processing path(s) to process sensed data.
Abstract:
Aspects of the present disclosure describe systems, methods and structures employing a two-stage detection for distributed vibration detection (DVS) in which a first step provides an abstracted/pre-processing data and the second step—based on the first step result—only processes locations that have or might have activity.
Abstract:
Aspects of the present disclosure describe a method for digital coherent transmission systems that advantageously provides low-complexity, single-step nonlinearity compensation based on artificial intelligence (AI) implemented in a deep neuron network (DNN).
Abstract:
Aspects of the present disclosure describe systems, structures and methods providing fully reconfigurable optical add-drop multiplexing (ROADM) that provide redundancy protection against any two (2) simultaneous wavelength selective switch (WSS) failures with only four 2×1 WSS structures for both Eastbound and Westbound traffic, while not requiring bidirectional operation of the WSS structures.
Abstract:
Disclosed are universal QPSK transmitter structures and methods for generating different QPSK signals exhibiting different polarization schemes, namely PolMux, PolMod and PolSw. The bit rate of the generated signals is variable, thereby allowing the transmitter to adjust to varying network traffic conditions. Advantageously, the generated signals may be detected by analog receivers (PolSw-QPSK) and coherent receivers (PolMux-QPSK, PolMod-QPSK, and PolSw-QPSK).
Abstract:
Systems and methods for data transport, comprising encoding one or more streams of input data with one or more low density parity check (LDPC) encoders, corresponding to one or more polarization/spatial mode branches. One or more encoded data streams are mapped to symbols, wherein the mapper is configured to assign bits of the symbols to a signal constellation and to associate the bits of the symbols with signal constellation points. A signal constellation is formulated which minimizes a mean-square error of the signal constellation representing the source. The optimum signal constellation size is adjusted to improve transmission quality by adjusting the signal constellation an optical signal to noise ratio (OSNR), wherein the signal constellation is selected using a look-up table (LUT); and the symbols are modulated in accordance with the output of the mapper onto a transmission medium.
Abstract:
An improved near-infrared spectroscopy based handheld tissue oxygenation scanner and method in which the handheld tissue oxygenation scanner is a small device-like an optical mouse-employing a single transmitter-receiver pair, an optical switch, and a plurality of optical fibers that transmit light into tissue under examination and receive light after interacting with that tissue. The integration of a plurality of optical fibers wherein each individual one provides emission/reception of infrared radiation advantageously provides a higher density of tissue interrogation by the infrared radiation thereby providing faster operation and more information in a given time period. Additional features and advantages of our inventive system and method include computer control and the ability to connect to a variety of computing devices via BlueTooth and other communications techniques.
Abstract:
A solar powered, self-contained DFOS extender that includes a wide-angle camera and a microphone. The DFOS extender monitors the perimeter constantly or at predetermined time intervals both visually and acoustically. It analyses these signals and if an alarming event is detected (such as an animal, a human, a car, or a truck seen or heard), then the DFOS extender generates a coded vibration via its in-built acoustic modem. These coded vibrations are detected by the fiber and an event log is generated. Consequently, a trespasser or false alarms (animals) are detected before they are within detectable distance of the underground DFOS optical sensor fiber. Advantageously, our DFOS extender can be placed in critical locations along a border where an increased detection range is desired and may later be relocated/reinstalled at other locations as well.