Abstract:
A elemental mirror for vehicles having a luminous reflectance of at least about 30% includes a substrate coated with a thin layer of elemental semiconductor having an index of refraction of at least 3 and an optical thickness of at least about 275 angstroms. Preferably, the elemental semiconductor coating is sputter coated silicon or germanium and a light absorbing coating is included therebehind. The mirror is spectrally nonselective with elemental semiconductor optical thicknesses of about 275 to 2400 angstroms on the front substrate surface. Spectrally selective mirrors are provided by adding an interference coating to the elemental semiconductor layer coating, preferably of a dielectric such as silicon dioxide or silicon nitride, on either the front or rear substrate surface, or by using a thicker, single elemental semiconductor layer. Instead of an absorbing coating behind the mirror, additional elemental semiconductor and dielectric thin layers may be included to reduce secondary reflections. The method includes coating the thin elemental semiconductor layer on flat glass and heating to harden the layer and make it more scratch resistant, or heating and bending the glass without destroying the reflective properties of the mirror. The thin interference layer, secondary reflection reducing layers, and/or light absorbing coating may be coated before or after heating and bending.
Abstract:
A vehicle automatic rearview mirror system with headlight activation control for establishing a reflectivity level of an electrochromic rearview mirror element and for controlling the activated state of a vehicle's headlights includes two light sensors, an electrochromic mirror element drive circuit that is responsive to light to which the two light sensors are exposed for establishing a partial reflectivity level for the vehicle's electrochromic rearview mirror element, and a headlight activation control that is responsive to light to which the two light sensors are exposed for activating the vehicle's headlights under low light conditions and deactivating the vehicle's headlights under high light conditions. The two light sensors are preferably directionally sensitive and aimed in different directions, one aimed forward of the vehicle and the other aimed rearward of the vehicle. The headlights are preferably activated as a function of the lowest light level to which either of the light sensors is exposed.
Abstract:
A modular rearview mirror system includes a variable reflectance device having a reflectance surface, which reflects light incident the surface from a direction rearward of the vehicle. The variable reflectance device is responsive to a drive signal by dimming to a partial reflectance condition. A control for the reflectivity value of the variable reflectance device includes first and second light sensors and a circuit. The circuit is responsive to the light sensors to produce a drive signal as a function of the light levels to which the light sensors are exposed. The first and second light sensors are both aimed generally in a direction rearwardly of the vehicle. The first light sensor is aimed along a generally horizontal axis and the second light sensor is aimed along another axis that deviates from the horizontal axis. A preferable deviation between the axes is at least approximately 10 degrees, but not more than approximately 70 degrees. The light sensors may both be positioned behind the variable reflectance device within the mirror casing and may be aimed through the variable reflectance device and/or through a potion of the substrate thereof. The variable reflectance device is preferably an electrochromic mirror element but may also be a liquid crystal device, suspended particle device, or other known electro-optical device. The automatic rearview mirror system may be used as an exterior vehicle mirror, as a vehicle interior mirror, or as all three mirrors on a vehicle. The mirror system is particularly suited for use on automobiles, minivans, light trucks, small vans, and sport utility vehicles.
Abstract:
A rearview mirror system for a vehicle having a reflective element with a reflective surface and a variable light transmission element includes an optical display device behind the reflective element in order to produce a visual display to the driver. A control is provided having a light sensor that senses light conditions in the vicinity of the vehicle and produces a continuously variable light signal indicative of such sensed light conditions. The control further includes a drive circuit that is responsive to the light signal in order to supply a drive signal to the reflective element and thereby establish the light transmission level of the light transmission element. The control further includes an intensity control circuit that varies the intensity of the optical display as a function of the value of the sensed light in the vicinity of the vehicle in order to accommodate physiological changes in the driver's eyes. The intensity control circuit further varies the intensity of the optical display device as a function of the drive signal supplied to the reflective element in order to compensate for reduced light transmission levels of the light transmission element. The intensity control circuit sums values of the light signal and the drive signal and processes the sum to a pulse-width modulated signal using a non-linear processor. The intensity control also provides a substantially constant high intensity of the optical display device for all values of sensed light above a predetermined high light level and for all values of sensed light below a predetermined low light level.
Abstract:
The present invention relates to electrochromic solutions and devices manufactured therefrom. More precisely, the invention relates to electrochemichromic solutions, and those devices manufactured with the same, that demonstrate superior responsiveness to those solutions known heretofore when an applied potential is introduced thereto. That is, the responsiveness observed in terms of solution coloring is of a greater rapidity, intensity and uniformity than those electrochemichromic solutions of the prior art. Preparation of these solutions involve the novel process of pre-treating at least one of the electrochemichromic compounds with a redox agent prior to placing it in contact with the other electrochemichromic compound. Moreover, the present invention relates to methods of preparing such novel solutions and processes for using these solutions to provide devices that exhibit and benefit from the aforementioned superior characteristics.
Abstract:
The specification discloses a method for reducing current leakage and enhancing UV stability by using electrochemichromic solutions whose solvents include, either solely or in combination with other solvents, glutaronitrile (GNT).
Abstract:
A reduced first surface reflectivity electrochromic/electrochemichromic rearview mirror assembly provides improved glare reduction and substantially less noticeable double imaging. Preferably, the assembly includes an anti-reflective layer or coating on the outermost, front surface of the front glass substrate/panel. The coating can be a single thin film or a multiple layer thin film stack of suitable durability and index of refraction. Alternately, a gradient refractive index layer produced by surface leaching, dip coating and heating, or ion implantation may be used. The invention is especially useful in electrochemichromic mirror assemblies having a laminated front glass where unwanted total reflection and double imaging could otherwise be pronounced because of opportunities for nonparallel attachment of the multiple glass substrates.
Abstract:
Transition metal nitrates such as nickel nitrate are dissolved in monoalcohols having from 1 to 5 carbon atoms. The coatings are applied to a substrate material and fired to convert the coating to an electrochromically active state.
Abstract:
An interior rearview mirror system and assembly includes a variable reflectivity reflective element and a video display screen disposed behind the reflective element and operable to display images viewable through the reflective element by a person viewing the interior rearview mirror assembly when it is normally mounted in a vehicle. The video display screen may be operable to brighten or enhance the intensity of images displayed by the video display screen responsive to a dimming condition of the variable reflectivity reflective element. The mirror system may include an image sensor and a decoder that decodes an output signal of the image sensor. The decoder has a microprocessor operable to control the video display screen, such that the captured image data are processed and images are displayed via operation of a common microprocessor. A compass chip may connect to a vehicle wire harness that extends from a vehicle headliner.
Abstract:
An interior rearview mirror system suitable for use in a vehicle includes an interior rearview mirror assembly having a mirror head and a reflective element. The mirror head includes a first microphone operable to generate a first analog signal and a second microphone operable to generate a second analog signal. The first analog signal is converted to a first digital signal by at least one analog to digital converter and the second analog signal is converted to a second digital signal by the at least one analog to digital converter. A digital sound processor is operable to process the first and second digital signals. Responsive to the processing of the first and second digital signals, the digital sound processor generates a digital output, and the digital output, at least in part, distinguishes a human voice present in the vehicle from noise present in the vehicle.