Abstract:
Transparent network devices intercept messages from non-transparent network devices that establish a connection. Transparent network devices modify these messages to establish an inner connection with each other. The transparent network devices mimic at least some of the outer connection messages to establish their inner connection. The mimicked messages and any optional reset messages are intercepted by the transparent network devices to prevent them from reaching the outer connections. Transparent network devices modify network traffic, using error detection data, fragmentation data, or timestamps, so that inner connection network traffic inadvertently received by outer connection devices is rejected or ignored by the outer connection network devices. Transparent network devices may use different sequence windows for inner and outer connection network traffic. To prevent overlapping sequence windows, transparent network devices monitor the locations of the inner and outer connection sequence windows and may rapidly advance the inner connection sequence window as needed.
Abstract:
A method for identifying peptides using tandem mass spectrometry takes the spectrum for a peptide to be analyzed and uses a scoring function to score a match between the spectrum and each candidate peptide in a peptide database. The scoring function has a value corresponding to a number of fragment peaks in the spectrum that match fragment peaks in a spectrum of the candidate peptide. Using the match scores, a generating function of the spectrum is computed to determine the number of peptide reconstructions at each value of the scoring function. The generating function is then used to determine the number of candidate peptides for each match score and the probability of a peptide having a given match score to the spectrum. A spectral probability can be determined by calculating the total probability of all peptides with scores equal to or larger than the given match score.
Abstract:
Relatively small capacity solid-state storage devices (SSD) are combined with larger capacity magnetic disk storage devices for storing storage block write data to ensure data consistency. Write operations are stored in a sequential write buffer in an SSD to guarantee the storage of write data and then copied from the sequential write buffer to the destination address in a magnetic disk storage device. The sequential write buffer store write data in locations corresponding to the order of receipt of write operations. Write data from the sequential write buffer is transferred to the magnetic disk storage device in the same order and a checkpoint index is frequently updated to indicate the completion of some transfers. During system initialization, the most recent value of the checkpoint index is retrieved and used as a starting location for transferring write data from the sequential write buffer to the magnetic disk storage device.
Abstract:
Solid-state storage devices (SSD) are combined with larger capacity magnetic disk-based RAID arrays for storing write data to ensure data consistency across multiple RAID disks. Write operations are stored in a sequential write buffer in at least one SSD to guarantee their storage and then copied from the sequential write buffer to the destination address in RAID array. The sequential write buffer stores write data in locations corresponding to the order of receipt of write operations. Write data from the sequential write buffer is transferred to the RAID array in the same order and a checkpoint index is frequently updated to indicate the completion of some transfers. During system initialization, a copy of the sequential write buffer and its associated checkpoint index are retrieved and used as a starting location for transferring write data from the sequential write buffer to the magnetic disk storage devices in the RAID array.
Abstract:
A network stack includes a packet loss analyzer that distinguishes between packet losses due to congestion and due to lossyness of network connections. The loss analyzer observes the packet loss patterns for comparison with a packet loss model. The packet loss model may be based on a Forward Error Correction (FEC) system. The loss analyzer determines if lost packets could have been recovered by a receiving network device, if FEC had been used. If the lost packets could have been corrected by FEC, the loss analyzer assumes that no network congestion exists and that the packet loss comes from the lossy aspects of the network, such as radio interference for wireless networks. If the loss analyzer determines that some of the lost packet could not have been recovered by the receiving network device, the loss analyzer assumes that network congestion causes these packet losses and reduces the data rate.
Abstract:
A mobile station in a wireless network includes a roaming timer. The roaming timer is set based on various criteria, and when the roaming timer expires, an attempt to roam is performed.
Abstract:
A switching circuit includes a source follower current mirror having an input, an output, a first source terminal, a bias terminal, and a second source terminal; a current source coupled to the input of the current mirror; an output terminal coupled to the output of the current mirror; a first bias transistor coupled to the first source terminal; a second bias transistor coupled to bias terminal of the current mirror; and a driver transistor coupled to the second source terminal. An input transistor in the current mirror is sized such that the input voltage is substantially independent of the supply voltage.
Abstract:
A circuit for processing a clock signal including first and second clock edges of different polarities, the circuit including an inverter for inverting a first clock edge to generate an inverted first clock edge and inverting a second clock edge to generate an inverted second clock edge; a first pass gate for receiving the inverted clock edge and outputting a first trigger signal of a first polarity; and a second pass gate for receiving the second clock edge and outputting a second trigger signal of the first polarity, wherein the second pass gate is controlled to open responsive to the inverted second clock edge; whereby the delay between the first clock edge and the first trigger signal is substantially equal to the delay between the second clock edge and second trigger signal.
Abstract:
An integrated circuit includes a number of pads. The integrated circuit further includes a cascode transistor having an open drain connection to a first one of the pads. A bias generator circuit is included in the integrated circuit. The bias generator circuit has an output connected to a gate terminal of the cascode transistor. In a first mode of operation, the bias generator outputs a bias signal that is derived from an integrated circuit supply voltage present at a second one of the pads. However, in a second mode of operation provided when the integrated circuit supply voltage is not present, the bias generator generates the bias signal derived from a voltage present at the first one of the pads.
Abstract:
A portable video player includes: a data input coupled to a memory module to store at least one video file, a video decoder coupled to the memory module via a memory interface to decode the video file, and a video interface connector to output to a display the decoded video file.