Abstract:
Techniques are described for wireless communication. A method for wireless communication at a user equipment (UE) includes receiving an instance of a discovery reference signal (DRS) on a beam over a shared radio frequency spectrum band; determining a public land mobile network identifier (PLMN ID) based at least in part on a time-frequency location of the instance of the DRS; and selectively performing a random access procedure based at least in part on the determined PLMN ID. A method for wireless communication at a base station includes transmitting an instance of a DRS on a beam over a shared radio frequency spectrum band; and transmitting a PLMN ID based at least in part on a time-frequency location of the DRS.
Abstract:
Methods, systems, and devices for wireless communication are described that involve determining multiple beamformed transmission beams for transmission of an opportunistic or multi-beam discovery reference signal (DRS) over a shared radio frequency spectrum band. The base station may determine a contention exempt transmission (CET) period for the shared spectrum band and transmit the DRS using multiple transmission beams during CET period or the base station may perform a listen before talk (LBT) procedure, and transmit, based on the LBT procedure, the DRS over a shared radio frequency spectrum band. The base station may transmit an indication of the type of DRS transmission, a subframe offset, random access configurations, and/or error correcting codes to enable a user equipment to discover, connect to, and acquire timing information associated with the network.
Abstract:
Opportunistic synchronization block transmission for millimeter (mm) wave (mmW) new radio (NR) shared spectrum (NR-SS) is disclosed. In the shared spectrum operations, additional opportunities for synchronization signaling are provided by piggy backing a single shot, opportunistic synchronization (sync) block onto the directional beam used for transmitting a data burst to a served user equipment. Instead of transmitting a whole sync slot, which includes sync blocks for each directional beam available at the participating mmW base station, the existing directional beam of the data burst is leveraged for transmitting the opportunistic sync block for that direction. The opportunistic sync block provides initial acquisition UEs with opportunity to obtain network access information, including timing and random access opportunities, for obtaining access to the network.
Abstract:
Disclosed techniques provide for different uplink resource allocation schemes in transmissions that use different shared radio frequency spectrum bands. In some cases, the different shared radio frequency spectrum bands may have different transmission characteristics or parameters, and associated resource allocation schemes may be selected to provide transmissions that are more likely to comply with the transmission characteristics or parameters associated with a particular band. In some cases, resource allocation types may be identified based on one band and mapped to identify uplink resources for an uplink transmission on a different shared radio frequency spectrum band.
Abstract:
Methods, systems, and devices for wireless communication are described. Wireless communications systems operating in unlicensed or shared radio frequency spectrum band may use different modes to manage hybrid automatic repeat request (HARQ) feedback. HARQ feedback may be transmitted autonomously or, in some cases, HARQ feedback may be solicited from a user equipment (UE) for one or several HARQ processes. Solicited feedback may be referred to as polled feedback and autonomous feedback may be referred to as unpolled feedback. Polled and unpolled feedback may be transmitted using different physical channels, and may be grant-based or triggered without an express grant. Buffers for polled and unpolled feedback may be separately maintained and managed. In a multicarrier configuration, uplink control information (UCI) for one or more carriers may be transmitted on a subset of configured uplink carriers. A number of carriers used for UCI may depend on operating conditions of a UE.
Abstract:
Methods, systems, and devices are described for wireless communication. A device may use enhanced reporting mechanisms to support control information reporting on shared spectrum. In some cases, a device may utilize enhanced component carriers (eCCs) for data transmissions. In one example, the device may transmit control information (e.g., ACK/NACK, CSI, etc.) to a corresponding device using a CCA exempt transmission (CET). In another example, a device may report control information quasi-periodically. For instance, a device may be assigned a specified interval and a control feedback window for reporting control information (e.g., CSI). The window may provide a duration prior and subsequent to the specified interval during which a UE may transmit control information. For example, the device may perform a CCA reserving the channel for a duration that does not include the specified interval but may transmit feedback information based on determining the specified interval falls within the assigned window.
Abstract:
Methods, systems, and devices for wireless communication are described. A base station may employ a multiplexing configuration based on latency and efficiency considerations. The base station may transmit a resource grant, a signal indicating the length of a downlink (DL) transmission time interval (TTI), and a signal indicating the length of a subsequent uplink (UL) TTI to one or more user equipment (UEs). The base station may dynamically select a new multiplexing configuration by, for example, setting the length of an UL TTI to zero or assigning multiple UEs resources in the same DL TTI. Latency may also be reduced by employing block feedback, such as block hybrid automatic repeat request (HARQ) feedback. A UE may determine and transmit HARQ feedback for each transport block (TB) of a set of TBs, which may be based on a time duration of a downlink TTI.
Abstract:
Various aspects described herein relate to communicating using dynamic uplink and downlink transmission time interval (TTI) switching in a wireless network. A notification can be received from a network entity of switching a configurable TTI from downlink communications to uplink communications. The configurable TTI can be one of a plurality of TTIs in a frame structure that allows dynamic switching of configurable TTIs between downlink and uplink communications within a frame. Additionally, uplink communications can be transmitted to the network entity during the configurable TTI based at least in part on the notification.
Abstract:
Various aspects of an approach for generating a large number of balanced weight sequences such as balanced Hamming weight preamble sequences are described herein. The approach provides for the generation of balanced weigh sequences that need to satisfy requirements such as minimal cross-correlation with delayed versions of itself and other sequences in the allowed set. The approach includes creating a set of symbol groups that include balanced properties from which a sequence may be generated by selecting therefrom.
Abstract:
An interference metric measured at a specific antenna may differ from interference metrics at different antennas. As a result, any actions based on the interference metric may unduly be influenced by such difference. In some implementations, an apparatus or device reports an overall interference metric that accounts for spatial variations in interference metrics at different antennas. An example method includes measuring, by a user equipment, an interference metric at each antenna of two or more antennas for wireless signals transmitted by a base station, generating an overall interference metric based on the interference metrics for the two or more antennas, and transmitting, by the user equipment, the overall interference metric to the base station.