Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) and base station may dynamically update a reference signal pattern, a symbol prefix configuration, or both based on channel propagation conditions such as a delay spread, multipath propagation, or frequency selectivity. In some cases, the UE may measure the channel propagation conditions and send an indication to the base station. The base station may then update the reference signal pattern or symbol prefix configuration accordingly, and send an indication of the new configuration to the UE. In some cases, i.e., for uplink communications, the base station may measure the channel propagation conditions directly, update the reference signal pattern or symbol prefix configuration, and then send a request to the UE to send subsequent reference signals or data communications based on the updated configuration.
Abstract:
Some aspects of the present disclosure provide systems and methods for utilizing information from inbuilt sensors of a wireless apparatus along with radio frequency (RF) measurements to assist and/or trigger a beam tracking operation. Some aspects of the present disclosure provide systems and methods for utilizing information available from inbuilt sensors of a wireless apparatus and RF measurements along with historical mobility information to assist a mobility operation such as an initial beam search, a neighbor beam search, and handovers.
Abstract:
Systems and methods of wireless communication of a paging signal are disclosed. According to some aspects of the disclosure, a sequence of a plurality of beam configurations may be selected for use in communicating a paging signal between a pair of wireless devices. Beam configurations can include beam configurations of different angular widths. Beam configurations may be iteratively used to attempt to successfully communicate the paging signal between the pair of wireless devices. Each iteration may use a beam configuration of a different angular width and/or a plurality of facing angles. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Methods and apparatuses are provided for causing active hand-in of a device from a macrocell base station to a femto node, which can be an inter-frequency hand-in. The femto node can broadcast a beacon, which can be received and reported by a device to a source base station along with one or more parameters. The source base station can communicate a handover message to the femto node or a related femto gateway along with the one or more parameters. The femto node or femto gateway can disambiguate the intended target femto node based in part on the one or more parameters, which can include applying one or more filters. Applying the one or more filters may include applying an UL RSSI filter to the one or more femto nodes to determine whether presence of the device causes a rise in UL RSSI measured at the one or more femto nodes.
Abstract:
A method and apparatus for a non-geosynchronous orbit (NGSO) satellite to comply with equivalent power flux density (EPFD) limits are disclosed. The example implementations may allow a constellation of NGSO satellites to comply with EPFD limits without disabling beams transmitted from the NGSO satellites. The power level of one or more beams to be transmitted from the NGSO satellites may be dynamically adjusted according to a beam power back-off schedule. In some aspects, the beam power back-off schedule may specify beam power back-off values as a function of latitude on Earth, and may allow for maximum allowable power levels for beams transmitted from the NGSO satellites without violating any of the EPFD percentile limits.
Abstract:
A method and apparatus for a non-geosynchronous orbit (NGSO) satellite to comply with equivalent power flux density (EPFD) limits are disclosed. The example implementations may allow a constellation of NGSO satellites to comply with EPFD limits without disabling beams transmitted from the NGSO satellites. The power level of one or more beams to be transmitted from the NGSO satellites may be dynamically adjusted according to a beam power back-off schedule. In some aspects, the beam power back-off schedule may specify beam power back-off values as a function of latitude on Earth, and may allow for maximum allowable power levels for beams transmitted from the NGSO satellites without violating any of the EPFD percentile limits.
Abstract:
Methods, apparatuses, and computer program products are disclosed for facilitating a beacon-assisted handover from a macro network to a femto cell during an active call. A femto cell management system assigns a unique identifier to a femto cell, which the femto cell utilizes to broadcast a beacon at a frequency different than the operating frequency of the femto cell. A wireless terminal receives a control message from the macro network directing the wireless terminal to scan particular frequencies. The wireless terminal subsequently provides a report to the macro network identifying attributes ascertained from the scan, which includes attributes associated with the beacon. The macro network then performs a handover from the macro network to the femto cell as a function of the attributes.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with classifying devices that communicate with a femto node for providing services thereto. In one example, a node is equipped to monitor and/or receive one or more parameters communicated by a device, assign a classification to the device related to a frequency of using the femto node based in part on the one or more parameters. In an aspect, the node is equipped to provide services to the device based on the classification. In another aspect, the node is equipped to provide the classification to one or more femto nodes, including the femto node, for providing services to the device.
Abstract:
Methods, systems, and devices for wireless communication are described. Wireless communications systems may support uplink random access channel (RACH) transmissions on multiple beams and over multiple component carriers (CCs). A wireless device may transmit a random access preamble to a base station in a first RACH transmission, which may indicate a set of CCs over which the base station may respond with a random access response (RAR) in a second RACH transmission. The second RACH transmission may then include an indication for which CCs the wireless device may use for a subsequent RACH transmission (e.g., a RACH message 3). The wireless device may also indicate a beam index and/or time-frequency resources associated with beams and/or CCs used for such cell acquisition transmissions. In other examples, the base station may indicate resources (e.g., via a handover command or RACH command) for wireless device scheduling request and/or beam-failure recovery request transmission.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for radio link monitoring with BWPs and interference measurements using communications systems operating according to new radio (NR) technologies. Certain aspects provide a method for wireless communication. The method generally includes determining one or more bandwidth parts (BWPs) for radio link monitoring (RLM) based on one or more signals; and configuring a user equipment (UE) to monitor the one or more signals on the one or more BWPs within a maximum channel bandwidth.