摘要:
The capacity of a cache memory is substantially reduced over that required for a multi-chip distributed shared memory (DSM) implementation to enable the cache memory, a main memory, a processor and requisite logic and control circuitry to fit on a single integrated circuit chip. The increased cache miss rate created by the reduced cache memory capacity is compensated for by the reduced cache miss resolution period resulting from integrating the main memory and processor on the single chip. The reduced cache miss resolution period enables the processor clock rate to be substantially increased, so that a processor having a simple functionality such as a reduced instruction set computer (RISC) processor can be utilized and still provide the required processing speed. The RISC processor is substantially smaller than a more complicated processor that would be required to provide the same processing speed in a multi-chip DSM implementation, thereby enabling the RISC processor to fit on the chip with the other elements. A single-chip communications node that can be used in telecommunications networks other than DSM includes a memory controller for providing local and remote memory coherency, and a bidirectional interconnect unit that converts memory access instructions into memory access messages and vice-versa.
摘要:
In a physical design automation system for producing an optimized cell placement for an integrated circuit chip, a placement optimization methodology is decomposed into a plurality of cell placement optimization processes that are performed simultaneously by parallel processors on input data representing the chip. The results of the optimization processes are recomposed to produce an optimized cell placement. The fitness of the optimized cell placement is analyzed, and the parallel processors are controlled to selectively repeat performing the optimization processes for further optimizing the optimized cell placement if the fitness does not satisfy a predetermined criterion. The system can be applied to initial placement, routing, placement improvement and other problems. The processors can perform the same optimization process on different placements, or on areas of a single placement. Alternatively, the processors can perform different optimization processes simultaneously on a single initial placement, with the resulting processed placement having the highest fitness being selected as the optimized placement. The processors can further selectively reprocess areas of a placement having high cell interconnect congestion or other low fitness parameters.
摘要:
The fitness of a cell placement for an integrated circuit chip is optimized by relocating at least some of cells to new locations that provide lower interconnect congestion. For each cell, the centroid of the net of cells to which the cell is connected is computed. The cell is then moved toward the centroid by a distance that is equal to the distance from the current position of the cell to the centroid multiplied by a "chaos" factor .lambda.. The value of .lambda. is selected such that the cell relocation operations will cause the placement to converge toward an optimal configuration without chaotic diversion, but with a sufficiently high chaotic element to prevent the optimization operation from becoming stuck at local fitness maxima. The new cell locations can be modified to include the effects of cells in other locations, such as by incorporating a function of cell density gradient or force direction into the computation. This spreads out clumps of cells so that the density of cells is more uniform throughout the placement. The attraction between cells in the nets is balanced against repulsion caused by a high local cell density, providing an optimized tradeoff of wirelength, feasibility and congestion.
摘要:
In a physical design automation system for producing an optimized cell placement for an integrated circuit chip, a placement optimization methodology is decomposed into a plurality of cell placement optimization processes that are performed simultaneously by parallel processors on input data representing the chip. The results of the optimization processes are recomposed to produce an optimized cell placement. The fitness of the optimized cell placement is analyzed, and the parallel processors are controlled to selectively repeat performing the optimization processes for further optimizing the optimized cell placement if the fitness does not satisfy a predetermined criterion. The system can be applied to initial placement, routing, placement improvement and other problems. The processors can perform the same optimization process on different placements, or on areas of a single placement. Alternatively, the processors can perform different optimization processes simultaneously on a single initial placement, with the resulting processed placement having the highest fitness being selected as the optimized placement. The processors can further selectively reprocess areas of a placement having high cell interconnect congestion or other low fitness parameters.
摘要:
In a physical design automation system for producing an optimized cell placement for an integrated circuit chip, a placement optimization methodology is decomposed into a plurality of cell placement optimization processes that are performed simultaneously by parallel processors on input data representing the chip. The results of the optimization processes are recomposed to produce an optimized cell placement. The fitness of the optimized cell placement is analyzed, and the parallel processors are controlled to selectively repeat performing the optimization processes for further optimizing the optimized cell placement if the fitness does not satisfy a predetermined criterion. The system can be applied to initial placement, routing, placement improvement and other problems. The processors can perform the same optimization process on different placements, or on areas of a single placement. Alternatively, the processors can perform different optimization processes simultaneously on a single initial placement, with the resulting processed placement having the highest fitness being selected as the optimized placement. The processors can further selectively reprocess areas of a placement having high cell interconnect congestion or other low fitness parameters.
摘要:
A routing multiplexer system provides p outputs based on a selected permutation of p inputs. Each of a plurality of modules has two inputs, two outputs and a control input and is arranged to supply signals at the two inputs to the two outputs in a direct or transposed order based on a value of a bit at the control input. A first p/2 group of the modules are coupled to the n inputs and a second p/2 group of the modules provide the n outputs. A plurality of control bit tables each contains a plurality of bits in an arrangement based on a respective permutation. The memory is responsive to a selected permutation to supply bits to the respective modules based on respective bit values of a respective control bit table, thereby establishing a selected and programmable permutation of the inputs to the outputs.
摘要:
The present invention is a method and system for outputting a sequence of commands and data described by a flowchart. The method includes steps as follows. A flowchart describing a sequence of commands and data is received. The flowchart includes a plurality of flowchart symbols. Each of the plurality of flowchart symbols is assigned a ROM (read only memory) record. Assigned ROM records are stored in a ROM. A processor is generated to include the ROM, wherein the processor receives as input a CLOCK signal, a RESET signal, an ENABLE signal and N binary inputs x1, x2, . . . xN, and outputs the sequence of commands and data.
摘要:
The present invention provides a method of verification of a RRAM tiling netlist. The method may include steps as follows. Properties “memory_number”, “clock_number” and “netlist_part” of all nets and cells of a RRAM tiling netlist are set to a value 0. A boolean value 0 is assigned to all ground nets of the RRAM tiling netlist, and a boolean value 1 is assigned to all power nets of the RRAM tiling netlist. The RRAM tiling netlist is verified for each customer memory Memk, k=1, 2, . . . , N.
摘要:
A system for, and method of, allowing conventional memory test circuitry to test parallel memory arrays and an integrated circuit incorporating the system or the method. In one embodiment, the system includes: (1) bit pattern distribution circuitry that causes a probe bit pattern generated by the memory test circuitry to be written to each of the memory arrays, (2) a pseudo-memory, coupled to the bit pattern distribution circuitry, that receives a portion of the probe bit pattern and (3) combinatorial logic, coupled to the pseudo-memory, that employs the portion and data-out bit patterns read from the memory arrays to generate a response bit pattern that matches the probe bit pattern only if all of the data-out bit patterns match the probe bit pattern.
摘要:
The present invention provides a method and BIST architecture for fast memory testing in a platform-based integrated circuit. The method may include steps as follows. An Mem-BIST controller transmitter is started to generate input signals for a memory in a platform using a deterministic and unconditional test algorithm. The input signals are delayed by a first group of pipelines by n clock cycles. The delayed input signals are received by the memory and an output signal is generated by the memory. The output signal is delayed by a second pipeline by m clock cycles. An Mem-BIST controller receiver is started to receive the delayed output signal for comparison.