摘要:
The present invention relates to a high efficiency LED driver and driving method thereof. In one embodiment, a high efficiency LED driving method configured for a LED device can include: (i) receiving a DC bus voltage and generating a driving voltage for the LED device through a power switch; (ii) comparing the DC bus voltage against a sum of the driving voltage and a first reference voltage; (iii) where when the DC bus voltage is greater than the sum of the driving voltage and the first reference voltage, generating a first output current; (iv) where when the DC bus voltage is greater than the driving voltage and less than the sum of the driving voltage and the first reference voltage, generating a second output current; and (v) matching an average current of the first output current and the second output current with a corresponding driving current.
摘要:
In one embodiment, a current detection circuit configured to determine an input current and an output current of a switching regulator, can include: (i) a mirror circuit configured to mirror a current flowing through a main power transistor of the switching regulator to generate a sampling signal that is in proportion to the main power transistor current; (ii) a current generating circuit configured to perform a first average value calculation of the sampling signal based on a switching cycle of the switching regulator to determine the input current; and (iii) the current generating circuit being configured to perform a second average value calculation of the sampling signal based on a conduction duty cycle of the main power transistor to determine the output current.
摘要:
The present invention relates to an SCR dimming circuit and method for regulating the luminance of an LED load. In one embodiment, an SCR dimming circuit can include: an SCR element that generates a lack-phase AC voltage based on a sinusoidal AC supply; a rectifier bridge that generates a lack-phase DC voltage based on the lack-phase AC voltage; a conduction angle generator that receives the lack-phase DC voltage, and generates a controlling signal representative of a conduction angle of the SCR element; and a dimming signal generator that generates a dimming signal to regulate luminance of the LED load, where the dimming signal generator receives the controlling signal, an adjustable signal, and a clamping voltage, an amplitude of a dimming phase angle range is selected by a fixed signal determined by the clamping voltage, and the dimming phase angle range may be shifted by regulating the adjustable signal.
摘要:
The present invention discloses circuits and methods for high efficiency and fast response AC-DC voltage converters. In one embodiment, an AC-DC voltage converter can include: (i) a first stage voltage converter having an isolated topology with a power factor correction function, where the first stage voltage converter is configured to convert an AC input voltage to a series-connected N branches of first stage voltages, where N is a positive integer of at least two; (ii) a second stage voltage converter having a non-isolated topology, where the second stage voltage converter is configured to convert one of the N branches of the first stage voltages to a second stage voltage; and (iii) where the second stage voltage and a remaining of the N branches of the first stage voltages are configured to be series-connected and converted to a DC output voltage.
摘要:
The present invention relates to control circuits and methods for a flyback converter and AC-DC power converters thereof. In one embodiment, a control circuit can include: (i) a turn-on signal generating circuit that is configured, in each switching cycle, to receive a drain-source voltage of a power switch of the flyback converter, and to activate a turn-on signal to turn on the power switch when the drain-source voltage reaches a valley value; (ii) a turn-off signal generating circuit that is configured, in each switching cycle, to activate a turn-off signal to turn off the power switch based on a power switch feedback error signal after a power switch conducting time interval has elapsed; and (iii) where input current and voltages of the flyback converter can be maintained as substantially in phase, and an output electrical signal of the flyback converter can be maintained as substantially constant.
摘要:
Methods and circuits related to power regulator start-up are disclosed. In one embodiment, a start-up circuit can include: (i) a delay circuit having a resistor and a capacitor, where the capacitor is coupled between ground and a common node; and (ii) a control chip that receives a reference voltage, and includes an input pin coupled to an input source, an output pin supplying power for a device, and a multiplexed pin coupled to the resistor at the common node to receive an enable signal. The start-up circuit outputs an electrical signal at the output pin based on a comparison of a voltage at the multiplexed pin against the reference voltage, and after a delay time determined by the capacitor and the reference voltage. The voltage at the multiplexed pin can increase continuously with a rising slope determined by input current flowing through the multiplexed pin during a start-up process.
摘要:
A lumped power supply circuit for converting an AC signal into a DC signal, the lumped power supply circuit including: a cascaded H-bridge circuit having N H-bridge sub-circuits connected in series between two input terminals of the AC signal, and being configured to convert the AC signal into N first voltage signals, where N is a positive integer greater than or equal to 2; a high-frequency filtering module configured to filter the N first voltage signals, and to generate N second voltage signals; a DC conversion module to receive the N second voltage signals, and to convert the N second voltage signals into at least one third voltage signal; and a lumped power buffer module having an output terminal coupled to a load, and being configured to receive the at least one third voltage signal, and to filter out part of power frequency fluctuations in the third voltage signal.
摘要:
A cascade circuit can include: N power conversion units connected in series between two ports of a power supply, where N is a positive integer greater than or equal to 2; a controller connected to one of the N power conversion units, and being configured to send a signal to be transmitted through the connected power conversion unit; where each of the power conversion units is configured to send the signal to be transmitted to a next-stage power conversion unit when the each of the power conversion unit shares a reference voltage with the adjacent next-stage power conversion unit; and where the signal to be transmitted is controlled to be transmitted from a previous-stage power conversion unit to a next-stage power conversion unit in sequence until the signal to be transmitted is received by all of the N power conversion units.
摘要:
A power converter can include: an input circuit, including a primary winding and a primary power switch which are coupled in series between an input terminal and a first ground; at least one constant voltage output circuit, including a first secondary winding coupled with said primary winding; and at least one constant current output circuit, including a second secondary winding coupled with said primary winding, a secondary power switch, a current output port, a second rectifier circuit and a current sampling circuit. The second rectifier circuit can be coupled between the current output port and the second secondary winding, the current output port can be coupled to an LED as a load, the LED may be coupled between one end of the second secondary winding and a second ground, and the secondary power switch and the current sampling circuit can connect in series.
摘要:
The present disclosure relates to a capacitor step-down LED driver and a driving method using the same. A capacitor step-down LED driver comprises a control circuit and a switching circuit. The control circuit turns on or off the switching circuit in response to an output current and an output voltage of the capacitor step-down LED driver, and thus controls an amount of energy supplied from an input side to an output side. In a first operation state, the switching circuit is controlled not to supply energy from the input side to the output side. In a second operation state, the switching circuit is controlled to supply energy from the input side to the output side. Thus, the output current is maintained to be a value of a desired driving current.