Abstract:
method is for use in a mobile telecommunications network that comprises a base station providing wireless connectivity within a base station cell, a mobile node providing wireless connectivity within a local cell and configured to communicate wirelessly with the base station, and a terminal configured to communicate wirelessly with the base station and configured to communicate wirelessly with the mobile node; and the method comprises: activating a limited local radio connection between the terminal and the mobile node; starting a first timer of fixed duration when or after the limited local radio connection is activated; and when the first timer has expired, activating a limited base station radio connection between the terminal and the base station and terminating the limited local radio connection between the terminal and the mobile node.
Abstract:
Methods and apparatuses for activating a vehicular-capable terminal to connect to a base station and/or road side unit. Accordingly a vehicular-capable terminal which would otherwise be in idle mode can then participate in vehicular communications, if appropriate.
Abstract:
A method of operating first and second terminal devices for transmitting data in a device-to-device communication mode in a wireless telecommunications system supporting communications on a first carrier operating over a first frequency band and a second carrier operating over a second frequency band. The first terminal device transmits control signalling on the first carrier and this is received by the second terminal device. The control signalling comprises an indication of that the first terminal device intends to transmit data to the second terminal device using the device-to-device communication mode on the second carrier after a carrier switch-over time. The first terminal device then proceeds to transmit data to the second terminal device on the second carrier using the device-to-device communication mode after the carrier switch-over time. The first and second terminal devices may cease communications on the second carrier after a carrier switch-back time.
Abstract:
A wireless telecommunications system including first and second groups of terminal devices operable to communicate with a base station via respective first and second network nodes. Each of the first and second groups of terminal devices are synchronized to communicate with the first and second network nodes, respectively, in a discontinuous mode including a repeating signalling cycle including first and second wake periods. The first wake period is a first portion of the repeating signalling cycle and the start of the first wake period is defined by a first offset value relative to the start of the repeating signalling cycle. The second wake period is a second portion of the repeating signalling cycle and the start of the second wake period is defined by a second offset value relative to the start of the repeating signalling cycle, being different from the first offset value.
Abstract:
A mobile communications network, method, and base station arranged to request and analyze measurement information from one or more infrastructure units including one or more relay nodes and one or more mobile communication terminals. The base station then sets forwarding rules in a relay node according to the measurement information reported so that the relay mode may forward any data received as soon as possible, or aggregate data over a period of time and only forward it once predetermined conditions have been met.
Abstract:
The present disclosure relates to a mobile communications network, method, base station comprising a controller, relay node and communications terminal. The base station can be arranged to receive measurement information from one or more infrastructure units, comprising one or more relay nodes and one or more mobile communication terminals, and this measurement information can be used by the base station to create a look-up table. The controller can then transmit, based on analysis of the measurement information, an indication of connections between relay node and communications terminals in the network, assigned communications resources to each of the infrastructure units in the network. The relay nodes in the network can then transmit channel sounding signals to be measured by other infrastructure units they have connections with as indicated by the controller, in their assigned communications resource, and with a specified transmission power, which is equal to the largest path loss between the relay node and any other infrastructure unit it is linked to. The infrastructure units which detect the channel sounding signals can then use them to measure and estimate a state of the channel, and as such, determine which frequency resources to use when scheduling transmissions. Time slots may be assigned periodically, aperiodically or in response to an event. Alternatively, channel sounding signals may be sent by more than one relay node simultaneously. The channel sounding signals may cover the entire bandwidth of the network, or may only cover a part of the network. In this latter case, a plurality of channel sounding signals may be transmitted in order to build up a profile of the state of the channel's entire bandwidth.
Abstract:
A communications device and method, in which data is communicated via a wireless access interface to a destination communications device with a device-to-device communication procedure. The communications device encodes the data, as data units, for transmission to the destination communications device with a repeat request-type protocol, the encoding providing an indication whether the data has been received correctly. The communications device transmits the encoded data units to the destination communications device, and receives an acknowledgement ACK message that one of the encoded data units has been correctly received by the destination communications device, or a negative acknowledgement NACK message that the encoded data units were not received correctly by the destination communications device. The ACK or NACK message is transmitted by another communications devices of a group of communications devices, acting as a relay communications device, which received and retransmitted the ACK or NACK message from the destination communications device.
Abstract:
A communications device can identify one or more sections of plural predetermined sections, divided into time-units, of shared communications resources of a wireless access interface for transmitting data signals to one or more other communications device. The communications device detects whether another of the one or more communications devices is transmitting signals in one or more of the identified sections of the shared communications resources in at least one time divided unit, and if signals transmitted by another of the communications devices are not detected, the device transmits signals in the identified one or more predetermined sections of the shared communications resources for at least one of the time divided units, and then, after a collision avoidance time, detects for at least one subsequent time unit whether another of the one or more communications devices transmits signals in one or more of the identified sections of the shared communications resources.
Abstract:
A method receiving data at a communications terminal from an OFDM wireless communications network including a wireless access interface communicating the data using plural OFDM sub-carriers includes: receiving from a first control channel having a bandwidth corresponding to a first frequency band providing first plural OFDM sub-carriers a resource allocation message allocating communications resources of a second group of OFDM sub-carriers; and receiving from a second control channel within the second frequency band within the second group of OFDM sub-carriers control information specific to the communications terminal operating to receive the data via the second group of OFDM sub-carriers. The communications terminal receives resource allocation messages from the first control channel to allocate resources within the second frequency band forming a virtual carrier and to receive control information specific to the communications terminal, which receives data from the second frequency band of the virtual carrier via a second control channel.
Abstract:
A method of communicating data to mobile terminals from an OFDM wireless communications network including a wireless access interface for communicating the data using a plurality of OFDM sub-carriers includes providing a first control channel having a bandwidth corresponding to a first frequency band at a first temporal position within a sub-frame, and transmitting resource allocation messages in the first control channel allocating communications resources of a first group of OFDM sub-carriers to communications terminals of a first type and allocating communications resources of a second group of OFDM sub-carriers to communications terminals of a second type. The method provides a second control channel within the second frequency band within the second group of OFDM sub-carriers in a second temporal position within a sub-frame, and transmits control information which is specific to the terminals of the second type operating to receive the data via the second group of OFDM sub-carriers.