Abstract:
An organic light emitting diode (“OLED”) display device includes a substrate having a display region having a light emitting region and a peripheral region surrounding the light emitting region, a pad region at a first side of the display region, and a trench at a second side of the display region, a plurality of light emitting structures on the light emitting region of the substrate, an active pattern along a profile of the trench on the peripheral region of the substrate, the active pattern being adjacent to the trench and including a pattern protrusion, and an upper gate wiring on and overlapping the active pattern, the upper gate wiring having a wiring protrusion adjacent to the pattern protrusion.
Abstract:
Disclosed is a display device including: a substrate including a display area for displaying an image and a peripheral area neighboring the display area; a plurality of signal lines formed in the display area; a pad formed in the peripheral area; and a plurality of connection wires for connecting the signal lines and the pad, wherein a first connection wire and a second connection wire neighboring the first connection wire from among the plurality of connection wires are disposed on different layers, and the first connection wire and the second connection wire, which are formed to extend from the pad and are bent at least twice to have at least one being bent toward backward direction, are disposed in the peripheral area.
Abstract:
A display includes a plurality of pixels in a non-quadrangular display area and a plurality of first driving circuits and a plurality of second driving circuits in a peripheral area of the display area. Each of the pixels is connected to a first signal line in a first direction and a second signal line in a second direction crossing the first direction. Each of the first driving circuits outputs a first signal to the first signal line of a corresponding one of the pixels. Each of the second driving circuits outputs a second signal to the second signal line of a corresponding one of the pixels. The number of second driving circuits between neighboring first driving circuits is different depending on a position in the peripheral area.
Abstract:
A display device includes a substrate having a first region in which an image is displayed, a second region in which an image is not displayed, and a bending region connecting the first region and the second region. The bending region is configured to bend along a bending axis which extends in a first direction. A plurality of pad terminals is disposed within the second region. A first width of the bending region, measured along the first direction, is narrower than a second width of the second region, measured along the first direction.
Abstract:
An emission driver includes light emission driving controllers that are electrically connected to light emission control lines. Each of the light emission driving controllers may include a first circuit block configured to provide a second voltage to a first node in response to a first clock signal and to output a first voltage as a light emission control signal based on a voltage at the first node and a second clock signal having a phase difference from a phase of the first clock signal; and a second circuit block configured to provide a synchronization signal to a second node in response to the first clock signal, to maintain a voltage at the second node using a metal-oxide-semiconductor (MOS) capacitor, and to pull down the light emission control signal to have the second voltage in response to the voltage at the second node.
Abstract:
A liquid crystal display (LCD) panel is disclosed. The LCD panel includes a plurality of pixels arranged in rows and columns, a first sub gate-line coupled to first row-pixels that are adjacent to a lower side of the first sub gate-line, a second sub gate-line coupled to second row-pixels that are adjacent to an upper side of the second sub gate-line, a plurality of gate-lines between the first sub gate-line and the second sub gate-line, a plurality of even data-lines coupled to first column-pixels that are adjacent to the even data-lines, and a plurality of odd data-lines coupled to second column-pixels that are adjacent to the odd data-lines. Here, each gate-line of the plurality of gate lines is coupled to first row-pixels that are adjacent to a lower side of the gate-line and second row-pixels that are adjacent to an upper side of the gate-line.
Abstract:
A non-quadrangular display includes a plurality of gate lines and a plurality of signal supply lines connected to the gate lines through corresponding contact points from among a plurality of contact points, and a difference between linear loads based on the signal supply lines and the gate lines connected to two contact points that have a similar symmetrical relationship from among the plurality of contact points is less than a set threshold value.
Abstract:
An exposure method includes exposing a substrate to form a first pattern on a first layer, measuring a first alignment value of the first pattern, generating first correction data by using the first alignment value, storing the first correction data and exposing the substrate to form a second pattern on a second layer disposed on the first layer by using the first correction data.
Abstract:
An organic light-emitting diode (OLED) display panel is disclosed. In one aspect, the OLED display panel includes a substrate including a display region and a peripheral region surrounding the display region. The panel further includes a plurality of OLEDs formed in the display region, a plurality of pixel circuits formed in the display region, and a pixel repair circuit formed in the peripheral region. When one of the pixel circuits is a dead pixel circuit, the dead pixel circuit is disconnected from a corresponding dead pixel OLED and the dead pixel OLED is connected to the pixel repair circuit via a corresponding repair line. The pixel repair circuit is configured to provide the dead pixel OLED with a grayscale repair current for representing a grayscale of the image and a compensation repair current for compensating a line load of the repair line.
Abstract:
A display panel and an organic light-emitting diode (OLED) display including the display panel are disclosed. The display panel includes a first pixel configured to emit a first color of light, a second pixel configured to emit a second color of light, and a third pixel configured to emit a third color of light. Each of the first to third pixels includes a light emission current applying unit including a driving transistor and a storage capacitor, a gate electrode of the driving transistor configured to receive a data signal from a display driver of the OLED display. The panel includes a light emission unit configured to emit light based on a light emission current. The panel also includes an initialization voltage supply unit configured to provide an initialization voltage to the gate electrode of the driving transistor and the first electrode of the OLED.