Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. An apparatus and method are provided for transmitting/receiving a paging message in a next generation communication system.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. An apparatus and method are provided for transmitting/receiving a paging message in a next generation communication system.
Abstract:
The present disclosure relates to a communication scheme and system which fuse a 5G communication system for supporting a higher data transfer rate than a 4G system with IoT technology, and a system thereof. The present disclosure may be applied to smart services such as smart homes, smart buildings, smart cities, smart cars or connected cars, healthcare, digital education, retail businesses, security and safety services, etc., based on 5G communication technologies and IoT related technologies. The communication method with a device according to the present invention comprises the steps of: transmitting information on frequency hopping settings to the device; and receiving, from the device, an uplink signal which hops frequencies according to the frequency hopping settings, wherein the frequency hopping settings are configured in a way that the uplink signal hops frequencies according to hopping patterns which hop according to frequency hopping steps, and to additional mirroring hopping patterns which are respectively inserted between the hopping patterns.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A method for performing device-to-device (D2D) communication by an in-coverage user equipment (UE) in a cellular communication system is provided. The method includes receiving a scheduling grant through a downlink control channel from a base station (evolved Node B (eNB)) and transmitting a scheduling assignment (SA) message in an SA region of a D2D communication frame and data in a data region of the D2D communication frame, based on the scheduling grant, wherein the scheduling grant indicates a resource pattern for transmission (RPT) corresponding to a set of resource units or a subset of a resource unit in a time domain and a frequency domain that is used for transmission of the data.
Abstract:
A pre-5G or 5G communication system to be provided for supporting higher data rates beyond a 4G communication system, such as Long Term Evolution (LTE). Disclosed are a method and an apparatus for performing interleaving by using an identical interleaving bit generation method in multiple interleavers included in a communication system. The present disclosure provides a method for interleaving an input bit sequence by an interleaver of a multiple access communication system. The method includes setting a common parameter used by multiple interleavers; setting a unique parameter for the interleaver in view of a correlation between bit sequences which are input to the multiple interleavers; and interleaving the input bit sequence by using prime-power depending on the common parameter and the unique parameter.
Abstract:
The present disclosure relates to a 5G or a pre-5G communication system for supporting a higher data rate following 4G communication systems such as LTE. In accordance with an embodiment of the present disclosure, a method of a base station includes: checking an operation mode depending on whether beam sweeping is supported, transmitting a signal related to the operation mode to a terminal, and performing communication with the terminal according to the operation mode.
Abstract:
A contention-based resource allocation method and apparatus is provided for use in a low power Device-to-Device (D2D) communication. The resource allocation method of a Device-to-Device (D2D) terminal of the present disclosure includes selecting an available resource in a frame, monitoring to detect a signal is received while a backoff timer is running, and performing, when no signal is received on the available resource before expiry of the backoff timer, a D2D communication using the available resource.
Abstract:
A soft demapping apparatus and method thereof includes a pre-processing unit to pre-process a reception signal obtained from a symbol representing bits. A candidate selection unit selects two candidates from among constellation points included in a constellation for each of the bits. A distance calculation unit calculates a Euclidean distance between the reception signal and the two candidates. A log-likelihood ratio (LLR) calculation unit calculates an LLR with respect to the bits based on the Euclidean distance between the reception signal and the two candidates.
Abstract:
A communication method and system for converging a fifth generation (5G) communication system for supporting higher data rates beyond a fourth generation (4G) system with a technology for internet of things (IoT) are provided. The communication method and system may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method of a terminal for receiving data in a cellular network is provided. The method comprises receiving a synchronization signal block (SS block) including at least one synchronization signal and a broadcast channel from a base station, identifying an offset between the SS block and a resource block (RB) grid from system information in the broadcast channel, and determining the resource block grid based on the offset.
Abstract:
A communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT) are provided. The communication method and system may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method of a user equipment (UE) for receiving data is provided. The method includes receiving, from a base station, information on radio resources allocated to the UE, and receiving, from the base station, data based on the information on the radio resources. The radio resources are associated with a plurality of symbols in a time domain and a plurality of resource block groups in a frequency domain. The information on the radio resources includes at least one of first information on a starting symbol, or second information on a size of each of the resource block groups.