Abstract:
An encoding method including: receiving and parsing a bitstream of an encoded image, determining coding units having a hierarchical structure being data units in which the encoded image is decoded, and sub-units for predicting the coding units, by using information that indicates division shapes of the coding units and information about prediction units of the coding units, parsed from the received bitstream, wherein the sub-units comprise partitions obtained by splitting at least one of a height and a width of the coding units according to at least one of a symmetric ratio and an asymmetric ratio, and reconstructing the image by performing decoding including motion compensation using the partitions for the coding units, using the encoding information parsed from received bitstream, wherein the coding units having the hierarchical structure comprise coding units of coded depths split hierarchically according to the coded depths and independently from neighboring coding units.
Abstract:
An apparatus for decoding an image, the apparatus including an entropy decoder configured to extract an intra prediction mode of a current block, and an intra prediction performer configured to determine a number of neighboring pixels located on a left side of the current block or an upper side of the current block, determine a location of one or more neighboring pixels, the intra prediction mode indicating a particular direction among a plurality of directions, the particular direction being indicated by using one of a dx number in a horizontal direction and a fixed number in a vertical direction, and the location of the one or more neighboring pixels being determined based on a shift operation.
Abstract:
A video encoding method and apparatus and a video decoding method and apparatus are provided. The video encoding method includes: prediction encoding in units of a coding unit as a data unit for encoding a picture, by using partitions determined based on a first partition mode and a partition level, so as to select a partition for outputting an encoding result from among the determined partitions; and encoding and outputting partition information representing a first partition mode and a partition level of the selected partition. The first partition mode represents a shape and directionality of a partition as a data unit for performing the prediction encoding on the coding unit, and the partition level represents a degree to which the coding unit is split into partitions for detailed motion prediction.
Abstract:
A method of decoding including obtaining transformation coefficients of a sub residual block based on location information of a non-zero transformation coefficient and level information of the non-zero transformation coefficient obtained from a bitstream.
Abstract:
A decoding apparatus for decoding an image by obtaining transformation coefficients of a sub residual block based on location information of a non-zero transformation coefficient and level information of the non-zero transformation coefficient obtained from the bitstream.
Abstract:
Entropy encoding and entropy decoding of image data are respectively performed whereby context modeling is performed on a context unit of blocks of the image data based on a context model of a previously encoded or decoded block.
Abstract:
Provided are a method and apparatus for encoding a video signal and a method and apparatus for decoding a video signal. The method of encoding the video signal includes: determining an optimum scaling bit depth of the video signal in consideration of a maximum bit number of an intermediate value obtained during transformation of the video signal and a maximum bit precision of the video signal; scaling the video signal according to a local shift value corresponding to a difference between the determined optimum scaling bit depth and an original bit depth of the video signal; and transforming the scaled video signal.
Abstract:
A method and apparatus for encoding and decoding a motion vector of a current block. The method of encoding including: generating information about the motion vector based on a motion vector of a current block and a motion vector predictor of the current block by estimating the motion vector and determining a first motion vector predictor candidate from among a plurality of motion vector predictor candidates as the motion vector predictor based on a result of the estimating; and generating a virtual motion vector by using a second motion vector predictor candidate and the information about the motion vector, generating vector differences between the virtual motion vector and the plurality of motion vector predictor candidates, comparing the vector differences with the information about the motion vector, and selectively excluding the second motion vector predictor candidate according to the comparing.
Abstract:
A video decoding apparatus for performing video decoding, in which a maximum split level of a transformation unit is determined based on maximum split information for an intra mode when information about the prediction mode indicates that a coding unit is predicted according to the intra mode. Accordingly, the information about the prediction mode indicates that the coding unit is predicted according to the intra mode, rather than according to any prediction modes.
Abstract:
A video encoding method is provided. The method includes: encoding a current region of a video by performing a transformation on the current region by using transformation units in a variable tree-structure which are determined from among transformation units that are hierarchically split from a base transformation unit with respect to the current region and which are generated based on a maximum split level of a transformation unit. The method further includes outputting encoded data of the current region, information about an encoding mode, and transformation-unit hierarchical-structure information comprising maximum size information and minimum size information of the transformation unit with respect to the video.