Abstract:
Disclosed is a method for controlling an uplink (UL) power in a multi-subframe scheduling system including a user equipment (UE) receiving a multi-subframe UL scheduling instruction or physical downlink control channel (PDCCH) data of a downlink control information (DCI) format 3/3 A of the UE, in a DL subframe where the multi-subframe UL scheduling instruction is transmitted, and the UE determining a transmitting power of the PUSCH of each UL subframe scheduled by the multi-subframe UL scheduling instruction, based on a power controlling command value, and transmitting corresponding PUSCH data based on the calculated transmitting power.
Abstract:
The present application discloses a multi-user data transmission method, comprising: by a target UE, receiving a CSI-RS configuration signaling from a base station and correspondingly measuring and reporting CSI information; by said target UE, receiving a scheduling signaling from the base station and correspondingly receiving a downlink data; and by said target UE, decoding, according to acquired control information of each interfering UE of a plurality of UEs other than said target UE, data of said each interfering UE, and decoding the downlink data of said target UE according to the decoding result of said each interfering UE. With the method of the present invention, the data transmission of multi-user multiplexing based on power domain can be effectively supported, and the system performance can be optimized.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present disclosure provides a power adjusting method and corresponding to control node and UE. According to the present disclosure, interference to adjacent devices of the same or different wireless access techniques may be avoided, uplink scheduling efficiency of the UE may be increased, and therefore the efficiency of the whole network is increased.
Abstract:
The present invention discloses a method for reporting channel state information, comprising the following steps of: acquiring, by UE, information about at least two sets of CSI RSs, wherein the information about CSI RSs comprises time domain resource and frequency domain resource occupied by CSI RSs; and measuring, by the UE, a reference signal according to the information about at least two sets of CSI RSs, determining channel state information, and reporting the channel state information to a base station. Another aspect of the present invention further provides a device for reporting channel state information. By the technical solutions provided by the present invention, after pre-coding the CSI RSs, the system performance can be improved, and the resources occupied by the CSI RSs may be greatly saved in practical applications, so that more downlink physical resources may be used for transmission of physical downlink shared channels (PDSCH), thereby increasing the throughput of downlink traffic.
Abstract:
Methods, device, and User Equipment (UE) for processing a soft buffer, used in a Time Division Duplexing (TDD) system where uplink-downlink subframe distribution changes dynamically, are provided. A first method includes allocating, by a base station, transmission resources for a UE, and determining a parameter for processing a soft buffer, and performing rate matching for Physical Downlink Shared Channel (PDSCH); and sending, by the base station, data to the UE via Physical Downlink Control Channel (PDCCH) and PDSCH. The second method includes receiving, by a UE information of transmission resources allocated to the UE by a base station, and determining a parameter for processing a soft buffer; and receiving, by the UE, PDCCH and PDSCH sent by the base station according to the transmission resources and the parameter for processing the soft buffer.
Abstract:
A method for configuring a search space of a downlink control channel is provided. The method includes determining the parameters for Enhanced Physical Downlink Control Channel (E-PDCCH) candidates of each aggregate level according to the number of Resource Elements (RE) in a subframe and/or the number of bits of Downlink Control Information (DCI) formats, when the parameters for E-PDCCH candidates of E-PDCCH search space is configured, determining, by a User Equipment (UE), the parameters for E-PDCCH candidates according to a current downlink subframe and a detected DCI format, and detecting blindly, by the UE, the E-PDCCH candidates in the E-PDCCH search space corresponding to the parameters for E-PDCCH candidates. The present invention also provides a UE and a base station. Application of the present invention can improve the flexibility of the base station scheduling, and reduce the possibility that the E-PDCCHs of different UEs block each other.
Abstract:
A method and apparatus are provided for transmitting and receiving an uplink Sounding Reference Signal (SRS). The method includes receiving index information for a sounding reference signal (SRS); determining an SRS offset, based on the index information; and transmitting the SRS, based on the SRS offset. If the index information includes an integer from 0 to 9, the SRS is transmitted twice in a period of 5 ms, and the SRS offset indicated by the index information is based on: IndexOffset 00, 1 10, 2 21, 2 30, 3 41, 3 50, 4 61, 4 72, 3 82, 4 9 3, 4.
Abstract:
A method and apparatus are provided for transmitting and receiving an uplink Sounding Reference Signal (SRS). The method includes receiving index information for an SRS; determining an SRS offset and an SRS period, based on the index information; and transmitting the SRS, based on the SRS offset and the SRS period. If the index information includes an integer from 10 to 644, the SRS period is selected among 5 ms, 10 ms, 20 ms, 40 ms, 80 ms, 160 ms, and 320 ms. If the index information includes an integer from 0 to 9, the SRS is transmitted twice in a period of 5 ms, and the SRS offset indicated by the index information is based on: IndexOffset 00, 1 10, 2 21, 2 30, 3 41, 3 50, 4 61, 4 72, 3 82, 4 93, 4
Abstract:
A method and apparatus are provided for transmitting and receiving an uplink Sounding Reference Signal (SRS). The method includes determining a number of single-carrier frequency division multiple access (SC-FDMA) symbols in an uplink pilot time slot (UpPTS); receiving index information for a sounding reference signal (SRS); determining an SRS offset, based on the index information; and transmitting the SRS, based on the SRS offset. If the index information includes an integer from 0 to 9, if the UpPTS includes two SC-FDMA symbols, a first symbol is indicated by SRS offset 0 and a second symbol is indicated by SRS offset 1, and if UpPTS includes one SC-FDMA symbol, the first symbol is indicated by the SRS offset 1. If the index information includes the integer from 0 to 9, the SRS offset indicated by the index information is based on: IndexOffset 00, 1 10, 2 21, 2 30, 3 41, 3 50, 4 61, 4 72, 3 82, 4 9 3, 4.
Abstract:
Base Station (BS) and User Equipment (UE) apparatuses for configuring a Random Access CHannel (RACH), and methods thereof, are provided. The method for a BS to configure a RACH includes generating configuration information on RACH resources, transmitting the configuration information on the RACH resources to a UE, receiving a random access preamble multiplexed on a plurality of continuous RACH resources from the UE, extracting the random access preamble multiplexed on the plurality of continuous RACH resources, and detecting the extracted random access preamble. The method for a UE to configure a RACH includes receiving configuration information on RACH resources from a BS, selecting occupied RACH resources among a plurality of continuous RACH resources, generating a random access preamble, multiplexing the generated random access preamble on the selected RACH resources, and transmitting the random access preamble on the selected RACH resources to the BS.