POSITIVE ELECTRODE ACTIVE MATERIAL, SECONDARY BATTERY, AND ELECTRONIC DEVICE

    公开(公告)号:US20230055781A1

    公开(公告)日:2023-02-23

    申请号:US17759165

    申请日:2021-01-19

    Abstract: The breakage or cracking of a positive electrode active material due to pressure application, repeated charging and discharging, or the like is likely to cause dissolution of a transition metal, an excessive side reaction, and the like. With a crack, unevenness, a step, roughness, or the like on the surface of a positive electrode active material, stress tends to be concentrated on part, which easily causes breakage. By contrast, with a smooth surface and a nearly spherical shape, stress concentration is alleviated; thus, breakage is unlikely to occur. Therefore, a positive electrode active material with a smooth surface and little unevenness is formed. For example, when the positive electrode active material is subjected to image analysis using a microscope image, the median value of the solidity is larger than or equal to 0.96. Alternatively, the median value of the fractal dimension of the positive electrode active material is smaller than or equal to 1.143. Alternatively, the median value of the circularity of the positive electrode active material is larger than or equal to 0.7.

    POSITIVE ELECTRODE ACTIVE MATERIAL PARTICLE

    公开(公告)号:US20230051128A1

    公开(公告)日:2023-02-16

    申请号:US17976925

    申请日:2022-10-31

    Abstract: A positive electrode active material particle with little deterioration is provided. A power storage device with little deterioration is provided. A highly safe power storage device is provided. The positive electrode active material particle includes a first crystal grain, a second crystal grain, and a crystal grain boundary positioned between the crystal grain and the second crystal grain; the first crystal grain and the second crystal grain include lithium, a transition metal, and oxygen; the crystal grain boundary includes magnesium and oxygen; and the positive electrode active material particle includes a region where the ratio of the atomic concentration of magnesium in the crystal grain boundary to the atomic concentration of the transition metal in first crystal grain and the second crystal grain is greater than or equal to 0.010 and less than or equal to 0.50.

Patent Agency Ranking