Abstract:
A method of electrically testing an in-cell touch screen is disclosed. The in-cell touch screen includes a display electrode, a driving line, and a detecting line. The detecting line intersects the driving line. The method includes floating the display electrode and performing at least one of: A) applying a first predetermined voltage to one column of adjacent columns of the driving line or one row of adjacent rows of the driving line, and grounding the other column of the adjacent columns or the other row of the adjacent rows, and B) applying a second predetermined voltage to one column of adjacent columns of the detecting line or one row of adjacent rows of the detecting line, and grounding the other column of the adjacent columns or the other row of the adjacent rows. The method also includes determining whether the driving line or the detecting line is shorted or opened.
Abstract:
A color filter substrate, an array substrate, and a display device are disclosed. The color filter substrate, array substrate, and the display device include a substrate having a display region and a non-display region, a color filter layer located in the display region and configured to filter light, and a fingerprint sensing layer located in the non-display region and configured to sense and identify a fingerprint.
Abstract:
A method of manufacturing a touch panel is disclosed. The method includes providing a plurality of substrates, each having a size, providing a carrier including a plurality of grooves each having a size corresponding with the size of the substrates. The method also includes placing the plurality of substrates into the grooves, simultaneously forming a touch structure layer on each of the substrates, and separating substrates from the carrier.
Abstract:
A touch-control display device is disclosed. The display device includes first, second, and third touch-control structures, a first plate, and a second plate opposing the first plate. The first and second touch-control structures form a capacitive touch-control structure, the third touch-control structure is an electromagnetic touch-control structure, and the first, second and third touch-control structures are respectively disposed on an inner side of the first plate, on an external side of the first plate, and on an inner or external side of the second plate. In addition, the first, second, and third touch-control structures are separated by one or more insulating layers.
Abstract:
A display panel includes a color filter substrate and an array substrate. The color filter substrate includes a transparent substrate and a touch electrode layer. The touch electrode layer includes a sensing electrode and a driving electrode disposed on opposite sides of the transparent substrate. The sensing electrode includes a plurality of striped sub-electrodes having random shapes and disposed along a first direction and spaced apart from each other in a second direction by a spacing. The first direction is perpendicular to the second direction. Each of the sub-electrodes has a width of about 3 micrometers and a resistance value that varies within 25 percent of a predetermined resistance value. The sensing electrode has a width of 4 to 5 millimeters.
Abstract:
An In-cell touch screen and a method for driving the same includes: concurrently providing a plurality of gate drive signals to the plurality of gate lines line by line and a plurality of touch drive signals to the plurality of drive lines line by line, collecting original touch signals from the plurality of sensing lines line by line; when collecting is performed on a sensing line and any gate line covered by the sensing line is supplied with a gate drive signal, defining the original touch signals collected from a sensing line as interference signals; and removing the interference signals from the original touch signals to obtain a valid touch signal.
Abstract:
A TFT array substrate is disclosed. The TFT array substrate includes an array of TFT switches including scan lines, data lines intersecting the scan lines, and TFT switches. Each of the TFT switches includes a gate electrode electrically connected to a scan line, a source electrode electrically connected to a data line, and a drain electrode. The TFT array substrate also includes an array of pixel electrodes, each of the pixel electrodes is electrically connected to the drain electrode of a corresponding TFT switch. At least one first pixel electrode is disposed in the array of the pixel electrodes, and each first pixel electrode has an overlapping portion overlapped by at least one of the scan lines and the data lines. In addition, in the overlapping portion, a shielding electrode layer is located between the first pixel electrode and at least one of the scan line and the data line overlapping the first pixel electrode.