Abstract:
A pixel electrode structure of a transflective liquid crystal display comprises a reflective electrode laid on a surface of the gate-insulating layer, a dielectric layer covering the reflective electrode, and a transmissive electrode on the dielectric layer and connected to the reflective electrode.
Abstract:
An LCD panel includes a first substrate, a second substrate, alignment protrusions and a liquid crystal layer between the first substrate and the second substrate. The first substrate includes pixel units arranged in an array. Each of the pixel units has at least one reflection area and one transmittance area. The first substrate has concaves in the reflection areas. The second substrate is above the first substrate. The first substrate or the second substrate has at least one padding layer in the reflection area. The alignment protrusions having approximately the same height are disposed on the second substrate and located in centers of each of the reflections and the transmittance areas. In the reflection area, a group of the alignment protrusions are in the concaves to keep a gap from the first substrate. The other group of the alignment protrusions outside of the concaves contact with the first substrate directly.
Abstract:
A multi-domain liquid crystal display (LCD) including an active device array substrate, an opposite substrate, an electric field shielding layer, and a liquid crystal layer is provided. The active device array substrate has a plurality of pixels, wherein each pixel has a pixel electrode. The opposite substrate has a common electrode disposed between the opposite substrate and the active device array substrate. The electric field shielding layer is disposed on a part of each pixel electrode. The liquid crystal layer is disposed between the active device array substrate and the opposite substrate. The liquid crystal layer corresponding to each pixel is divided into a low-voltage domain and a high-voltage domain having the same cell gap, wherein the position of the electric field shielding layer is corresponding to the position of the low-voltage domain. Color shift of the multi-domain LCD is improved effectively at oblique viewing angles.
Abstract:
A transflective liquid crystal display having a plurality of pixels, each pixel having a plurality of color sub-pixels, each sub-pixel having a transmission area associated with a first charge storage capacitance and a reflection area associated with a second storage capacitance. In the sub-pixel, a data line, a first gate line, a second gate line and a common line are used to control the operational voltage on the liquid crystal layer associated with the sub-pixel. The first and second gate lines are separately set at a first state and a second state. The ratio of the first charge storage capacitance to the second charge storage capacitance can be controlled according to the states of the gate lines. The second charge storage capacitance is provided by two capacitors connected in parallel through a switching element which can be open or closed according to the states of the gate lines.
Abstract:
An active matrix substrate including a substrate, a plurality of scan lines, a plurality of data lines and a plurality of sub-pixels is provided. The scan lines and the data lines are disposed on the substrate, and define a plurality of sub-pixel regions distributed in a delta arrangement. The sub-pixels corresponding to the sub-pixel regions are disposed on the substrate. The sub-pixels are electrically connected with corresponding scan lines and corresponding data lines. Between two sub-pixel regions corresponding to any two adjacent sub-pixels at a same side of one scan line, there are two data lines. Each sub-pixel includes an active device and a pixel electrode. The active device is electrically connected with a corresponding scan line and a corresponding data line. The pixel electrode is electrically connected with the active device, and extends from the sub-pixel region corresponding to the sub-pixel to a position over the data line.
Abstract:
A detergent practical for cleaning things as well as for extinguishing a fire is disclosed to contain a retardant, a surfactant, a thickener, and sterilizing water.
Abstract:
A transflective liquid crystal display device implementing a color filter having various thicknesses. An insulating layer is formed on a lower substrate. A lower electrode is formed on the insulating layer, wherein the lower electrode has a transmissive portion and a reflective portion. An upper substrate opposing the lower substrate is provided, wherein a side of the upper substrate has a color filter having various thicknesses. A planarization layer is formed on the color filter, wherein the planarization layer is opposite to the lower substrate. An upper electrode is formed on the planarization layer. A liquid crystal layer is interposed between the upper and lower substrates.
Abstract:
A backlight module including a first light guide plate, a first light source, a second light guide plate, and a second light source. The first light guide plate includes a first side, a second side opposite to the first side, and a first surface with a micro-groove structure. The first light source is disposed on the first side of the first light guide plate. The second light guide plate is disposed on the first light guide plate, and includes a third side, a fourth side opposite to the third side, and a second surface with a micro-groove structure. The fourth side and the second side are located at the same side. The second light source is disposed on the fourth side of the second light guide plate.
Abstract:
A pixel device of a transflective liquid crystal display (LCD) having a hybrid alignment nematic liquid crystal layer driven by a lateral electric field. The pixel device of the transflective LCD includes an upper panel and a lower panel, in which the lower panel has an upper surface divided into a reflective region covered with a reflector and a remainder transmission region.
Abstract:
A driving circuit of a pixel includes a driving capacitor for driving liquid crystals according to a voltage difference between first and second ends of the driving capacitor, a reference voltage source for providing a reference voltage, a first data line for providing a first driving voltage, a second data line for providing a second driving voltage, a first scan circuit for electrically connecting the first and the second data lines to the first and the second ends of the driving capacitor respectively when the first scan circuit is turned on, a first scan line for controlling on and off states of the first scan circuit, a second scan circuit for electrically connecting the first end and the second end of the driving capacitor when the second scan circuit is turned on, and a second scan line for controlling on and off states of the second scan circuit.