Abstract:
A portable device for quantification of thermochromatic coating signatures is provided. The portable device includes a directing component configured to direct light to a target having a thermochromatic coating. Additionally, the portable device includes a conditioning component configured to condition reflected light from the target, the reflected light including thermochromatic coating signatures. The portable device also includes an image detector configured to generate images from the conditioned reflected light, and a processor configured to receive and analyze images from the image detector and identify at least one portion of the target that has exceeded a predefined temperature or predefined temperature variance based on the analyzed images.
Abstract:
A method and system for applying conductive traces to a structure to complete an electrical circuit. One or more graphene traces is formed on a substrate. The substrate is applied to the structure such that one or more first portions of the electrical circuit are electrically connected to respective one or more second portions of the electrical circuit by respective ones of the one or more graphene traces. The substrate may be removed from the structure such that the graphene traces remain on the structure. The structure is preferably a fuselage of an aircraft and is formed from a composite material. The substrate may be applied to the structure is prior to curing of the composite material and/or prior to a complete formation of the fuselage, such that, after the fuselage is completely formed, the one or more graphene traces become embedded within the composite material forming the fuselage.
Abstract:
A method and system for applying conductive traces to a structure to complete an electrical circuit. One or more graphene traces is formed on a substrate. The substrate is applied to the structure such that one or more first portions of the electrical circuit are electrically connected to respective one or more second portions of the electrical circuit by respective ones of the one or more graphene traces. The substrate may be removed from the structure such that the graphene traces remain on the structure. The structure is preferably a fuselage of an aircraft and is formed from a composite material. The substrate may be applied to the structure is prior to curing of the composite material and/or prior to a complete formation of the fuselage, such that, after the fuselage is completely formed, the one or more graphene traces become embedded within the composite material forming the fuselage.
Abstract:
A method of monitoring a thermal protection system coupled to a structural component is provided. The thermal protection system includes a thermally insulative body and at least one layer of thermochromatic material applied thereon such that the at least one layer is positioned between the thermally insulative body and the structural component. The method includes determining a value of a thermochromatic property of the at least one layer of thermochromatic material, wherein the value of the thermochromatic property is responsive to an amount of heat applied to the at least one layer of thermochromatic material, comparing the value to a baseline value of the thermochromatic property, and determining degradation of the thermal protection system when the value of the thermochromatic property deviates from the baseline value.
Abstract:
A method and apparatus for forming an organic semiconductor circuit. A circuit printer is positioned relative to a location on a surface of a composite structure. A number of organic materials is deposited in a pattern on the surface of the composite structure at the location to form the organic semiconductor circuit on the surface of the composite structure at the location.
Abstract:
A system and method for evaluating a bond is provided. The system uses an underwater spark discharge to generate a compression wave in a first vessel containing a liquid. The system further includes a second vessel in which a vacuum is pulled to hold the first vessel against a bonded structure being inspected. The compression wave is directed to propagate from the liquid into the bonded structure to apply a known force to the bond being inspected.
Abstract:
A prepreg composition includes a plurality of core/shell quantum dots that exhibit an increase in detectable luminescence when the prepreg composition has been exposed to an amount of UV radiation that would render the prepreg composition unsuitable for use in fabricating composite structures, thereby greatly simplifying detection of compromised prepreg materials that for example, may have been inadvertently and undesirably exposed to UV radiation during storage or handling. A method of manufacturing a prepreg composition includes forming a bed of fibers, contacting the fiber bed with a resin matrix, and disposing a plurality of core/shell quantum dots on or in the resin matrix.
Abstract:
A method for real-time surface imperfection detection for additive manufacturing and 3-D printing parts is provided. The method includes directing a first light radiation using one or more illumination sources, wherein the first light radiation illuminates a target area of a part being manufactured in a uniform chromatic light such that the target area appears to have a substantially uniform monochromatic color; capturing a current image of a second light radiation that is scattered or reflected by the target area using one or more feedback cameras; and analyzing the current image of the second light radiation using at least one of the one or more feedback camera with a previously acquired image to determine whether a surface imperfection exists or does not exist.
Abstract:
A system and method for detecting an anomaly in a structure using an adaptive filter to compensate for variations in piezoelectric transducer performance due to environmental factors such as temperature. A first voltage signal having a first amplitude is sent to a reference piezoelectric actuator. Thereafter, a first reference voltage signal is received from a reference piezoelectric receiver which is acoustically coupled to detect the guided wave generated by the reference piezoelectric actuator. A second amplitude is determined using an optimization algorithm of an adaptive filter to compensate for nonlinear behavior of the reference piezoelectric actuator and receiver based on the first reference voltage signal. Then the adaptive filter sends a second voltage signal having the second amplitude to the reference and test piezoelectric actuators. Reference and test voltage signals are received from the reference and test piezoelectric receivers in response to the second voltage signal. A difference voltage signal representing differences between the reference and test voltage signals received is then recorded.
Abstract:
Systems, apparatuses and methods provide for technology that monitors a component. A monitoring apparatus includes a sensor to monitor a state of a component, a power circuit to convert an electromagnetic signal to electrical power, a capacitor bank coupled to the power circuit and to the sensor to receive electrical power from the power circuit and to supply electrical power to the sensor, and a wireless readout to convert data from the sensor into a wireless communication signal. A method of monitoring a component includes coupling a sensor to a component, the sensor configured to monitor a state of the component, applying power to the sensor from a capacitor bank, and storing data obtained from the sensor, where the data relates to a state of the component. The method can include charging the capacitor bank via a power circuit, where the power circuit converts an electromagnetic signal to electrical power.