Abstract:
A symbol modulation system applicable to a body area network is disclosed herein. The symbol modulation system includes a symbol mapper. The symbol mapper is configured to determine a time within a predetermined symbol transmission interval at which a transmission representative of the symbol will occur. The time is determined based on a value of a symbol and a value of a time-hopping sequence. The time is selected from a plurality of symbol value based time slots, and a plurality of time-hopping sequence sub-time-slots within each symbol value based time slot. The symbol mapper is configured to generate a single guard interval within the symbol transmission interval. The single guard interval is positioned to terminate the symbol transmission interval.
Abstract:
A wireless network receiver includes a detection module that uses preamble data in a data frame for signal processing functions and the detection module is configured to adjust the number of preamble data bits that are used based on the power of a received signal.
Abstract:
A system includes an analog front end (AFE) unit to be coupled to a power line network, and a controller coupled to the AFE unit. More specifically, the AFE unit is to receive a packet signal from the power line network wherein, based on a first gain parameter, the AFE unit is to amplify the received packet signal. The controller is configured to calculate a root-mean-square (RMS) power of the amplified packet signal. Further, the AFE unit is to calculate a second gain parameter based on the calculated RMS power of the amplified packet signal and the first gain parameter, wherein the second gain parameter is to be used to amplify the received packet signal instead of the first gain parameter.
Abstract:
A PLC network system and method operative with OFDM for generating MIMO frames with suitable preamble portions configured to provide backward compatibility with legacy PLC devices and facilitate different receiver tasks such as frame detection and symbol timing, channel estimation and automatic gain control (AGC), including robust preamble detection in the presence of impulsive noise and frequency-selective channels of the PLC network. A MIMO PLC transmitter device may selectively vary amounts of cyclic shift (CS) for different transmit phases based on whether an initial CS vector elicits an ACK signal back from a PLC receiver within a timeout period.
Abstract translation:一种PLC网络系统和方法,用于生成具有合适的前导码部分的MIMO帧的OFDM帧,其被配置为提供与传统PLC设备的向后兼容性,并且促进诸如帧检测和符号定时,信道估计和自动增益控制(AGC)的不同接收机任务,包括 在存在脉冲噪声和PLC网络的频率选择性通道的情况下进行鲁棒前同步码检测。 MIMO PLC发射机设备可以根据初始CS向量在超时时段内是否从PLC接收机返回ACK信号来选择性地改变针对不同发射阶段的循环移位量(CS)。
Abstract:
In at least some embodiments, a communication device includes a transceiver with a physical (PHY) layer. The PHY layer is configured for body area network (BAN) operations in a limited multipath environment based on a constant symbol rate for BAN packet transmissions and based on M-ary PSK, differential M-ary PSK or rotated differential M-ary PSK modulation. The PHY layer is configured to transmit and receive data in a frequency band selected from the group consisting of: 402-405 MHz, 420-450 MHz, 863-870 MHz, 902-928 MHz, 950-956 MHz, 2360-2400 MHz, and 2400-2483.5 MHz.
Abstract:
A symbol modulation system applicable to a body area network is disclosed herein. The symbol modulation system includes a symbol mapper. The symbol mapper is configured to determine a time within a predetermined symbol transmission interval at which a transmission representative of the symbol will occur. The time is determined based on a value of a symbol and a value of a time-hopping sequence. The time is selected from a plurality of symbol value based time slots, and a plurality of time-hopping sequence sub-time-slots within each symbol value based time slot. The symbol mapper is configured to generate a single guard interval within the symbol transmission interval. The single guard interval is positioned to terminate the symbol transmission interval.
Abstract:
A system includes a DPSK transmitter and a DPSK receiver. The DPSK transmitter is configured to encode a signal and transmit the encoded signal as a sequence of symbols. The DPSK receiver is configured to decode the sequence of symbols into bit values. The DPSK receiver further includes a first decoder which is configured to receive the sequence of the symbols, and to estimate extrinsic information for each symbol and forward the extrinsic information to a second decoder. Moreover, if magnitude of a LLR received form a second decoder is greater than a threshold, the first decoder is configured to determine a bit value of a received symbol, without considering neighboring symbols in the sequence of symbols. Still moreover, if the magnitude of the LLR received from the second decoder is not greater than the threshold, the first decoder is configured to continue to decode the received symbol and consider neighboring symbols in the sequence of symbols.
Abstract:
Embodiments include methods of powerline communications using a preamble with band extension is provided. A method may include receiving a packet data unit PDU. Bit-level repetition is applied to at least a portion of the PDU to create a repeated portion. Interleaving is performed per a subchannel. Pilot tones are inserted in the interleaved portion. Each data tone is modulated with respect to a nearest one of the inserted pilot tones. The PDU is transmitted over a power line.
Abstract:
A system and method for optimizing power consumption of energy harvesting nodes in a wireless sensor network. In one embodiment, a system includes a network coordinator. The network coordinator includes a wireless transceiver and a controller. The wireless transceiver is configured to provide access to the wireless sensor network. The controller is configured to determine whether a wireless device that is wirelessly communicating with the network coordinator is powered via energy harvesting. The controller is also configured to schedule, based on a determination that the wireless device is powered via energy harvesting, the wireless device to communicate via the wireless sensor network using a priority timeslot of a superframe of the wireless sensor network. The priority timeslot is a timeslot occurring in an initial portion of the superframe.
Abstract:
A system and method for reducing energy consumption in a wireless network. In one embodiment, a system includes a network coordinator configured to manage access to a wireless network. The network coordinator includes a controller. The controller is configured to define a channel hopping list that specifies on which channel a beacon signal is transmitted in each slot frame of the wireless network. The controller is also configured to set a number of time slots in each slot frame based on a length of the channel hopping list. The controller is further configured to transmit a first beacon signal in each slot frame on a channel specified by the channel hopping list. The number of slots in each slot frame causes the first beacon signal to be transmitted on a same channel in each slot frame.