Abstract:
A method of assigning phases to shifters on a layout is provided. The method includes creating a link between any two shifters within a predetermined distance from each other. In one embodiment, the predetermined distance is larger than a minimum feature size on the layout, and smaller than a combined minimum pitch and regulator width. A weight can be assigned to each created link. Phases can be assigned to the shifters, wherein if a phase-shift conflict exists on the layout, then one or more links can be broken based on their weight.
Abstract:
A method for manufacturing integrated circuits using opaque field, phase shift masking. One embodiment of the invention includes using a two mask process. The first mask is an opaque-field phase shift mask and the second mask is a single phase structure mask. A phase shift window is aligned with the opaque field using a phase shift overlap area on the opaque field. The phase shift mask primarily defines regions requiring phase shifting. The single phase structure mask primarily defines regions not requiring phase shifting. The single phase structure mask also prevents the erasure of the phase shifting regions and prevents the creation of undesirable artifact regions that would otherwise be created by the phase shift mask.
Abstract:
A method and apparatus for performing an operation on hierarchically described integrated circuit layouts such that the original hierarchy of the layout is maintained is provided. The method comprises providing a hierarchically described layout as a first input and providing a particular set of operating criteria corresponding to the operation to be performed as a second input. The mask operation, which may include operations such as OPC and logical operations such as NOT and OR, is then performed on the layout in accordance with the particular set of operating criteria. A first program data comprising hierarchically configured correction data corresponding to the hierarchically described layout is then generated in response to the layout operation such that if the first program data were applied to the flattened layout an output comprising data representative of the result of performing the operation on the layout would be generated. As the first program data is maintained in a true hierarchical format, layouts which are operated upon in accordance with this method are able to be processed through conventional design rule checkers. Further, this method is capable of being applied to all types of layouts including light and dark field designs and phase shifting layouts.
Abstract:
A method and apparatus for the correction of integrated circuit layouts for optical proximity effects which maintains the original true hierarchy of the original layout is provided. Also provided is a method and apparatus for the design rule checking of layouts which have been corrected for optical proximity effects. The OPC correction method comprises providing a hierarchically described integrated circuit layout as a first input, and a particular set of OPC correction criteria as a second input. The integrated circuit layout is then analyzed to identify features of the layout which meet the provided OPC correction criteria. After the areas on the mask which need correction have been identified, optical proximity correction data is generated in response to the particular set of correction criteria. Finally, a first program data is generated which stores the generated optical proximity correction data in a hierarchical structure that corresponds to the hierarchical structure of the integrated circuit layout. As the output correction data is maintained in true hierarchical format, layouts which are OPC corrected according to this method are able to be processed through conventional design rule checkers with no altering of the data.
Abstract:
A method and apparatus for creating a phase shifting mask and a structure mask for shrinking integrated circuit designs. One embodiment of the invention includes using a two mask process. The first mask is a phase shift mask and the second mask is a single phase structure mask. The phase shift mask primarily defines regions requiring phase shifting. The single phase structure mask primarily defines regions not requiring phase shifting. The single phase structure mask also prevents the erasure of the phase shifting regions and prevents the creation of undesirable artifact regions that would otherwise be created by the phase shift mask. Both masks are derived from a set of masks used in a larger minimum dimension process technology.