Abstract:
An analogue probe for a machine tool apparatus, including a probe body and a stylus member movably secured to the probe body in a suspended rest position via a suspension mechanism. A sensor is provided for measuring the extent of displacement of the stylus member relative to the probe body from a rest position. The analogue probe further includes a first compliant sealing member extending between the probe body and stylus member such that the sensor is contained within a chamber sealed from external contaminants. The analogue probe also has for a suppressor for suppressing movement of the stylus member away from its suspended rest position induced by changes in the chamber's internal pressure and/or changes in the analogue probe's operating environment.
Abstract:
An analogue probe for a machine tool apparatus, which includes a probe body, a stylus member movably secured to the probe body and a sensor that measures the extent of displacement of the stylus member relative to the probe body, in which the sensor is contained within a chamber in the probe body. The analogue probe further includes a vent between the chamber and the outside of the probe body, configured such that, when the vent is open, the pressure within the chamber can equalise with the analogue probe's operating environment's pressure, and is further configured such that the vent's opening to the outside of the probe body can be closed so as to seal the chamber and the sensor from external contaminants during operation of the analogue probe.
Abstract:
A method and apparatus is disclosed for producing precision marks for a metrological scale in the form of a stainless steel ribbon. A laser is used to produce ultra-short pulses which have a fluence at the ribbon such that ablation takes place. The laser light can be scanned via scanner and the pitch of the marks can be controlled. The ablative technique causes little thermal input and improves the accuracy of the scale.
Abstract:
A tool setting or tool analysis device for a machine tool comprises a light source for producing a light beam. A light receiver receives the light beam and produces a signal indicative of the amount of light received. This is analyzed by a main analysis circuit to generate a trigger signal to a machine controller when the beam is at least partially occluded. To provide fail-safe operation should the main circuit not recognize the tool, a back-up trigger signal is produced after a delay by a delay circuit. In one preferred form, the back-up trigger signal may oscillate, providing repeated edges which can ensure fail-safe operation even if the machine controller suffers from a blind window and therefore misses the initial trigger signal.
Abstract:
This invention relates to a method of operating an absolute encoder apparatus comprising a scale having features defining absolute position information in at least one measuring dimension, and a readhead configured to read the features. The method comprises: obtaining at least one representation of at least some of the features defining absolute position information; analyzing the at least one representation to determine at least one parameter indicative of the quality of the representation; and providing an output indicative of the relative setup of the scale and readhead based at least in part on the at least one parameter.
Abstract:
A Raman spectroscopy system has a filter arrangement comprising two filters (16, 26A) in series, to reject light of the illuminating wavenumber from the scattered light of interest. The filters are tilted and have different characteristics for light of first and second different polarisation states. To counter this, the filters are arranged so that their respective effects on the respective polarisation states at least partially cancel each other out. This may for example be done by arranging their tilt axes (32, 34) orthogonally to each other.
Abstract:
Measurement apparatus is described that comprises a measurement portion for acquiring object measurements and an output portion for outputting measurement data relating to the acquired object measurements. A deactivation portion is provided for inhibiting normal operation of the measurement apparatus such that output of the measurement data is prevented. The deactivation portion, in use, reads apparatus usage information from an apparatus usage module and inhibits normal operation of the measurement apparatus if said apparatus usage information fails to meet one or more predetermined criteria. The apparatus usage module may be provided as an integral part of the measurement apparatus or as a separate activation button. The measurement apparatus may comprise a measurement probe such as a touch trigger measurement probe.
Abstract:
A method of operating a coordinate positioning apparatus comprising an articulated head having at least one rotational axis. The method comprises, in any suitable order, loading at least one interchangeable task module onto the articulated head; and loading at least one interchangeable task module counterweight on the articulated head. The at least one interchangeable task module counterweight at least partially counterbalances the weight of the at least one task module on the articulated head about the at least one axis.
Abstract:
A metrology apparatus including a body and a first member rotatable relative to the body about a first axis of rotation, said first axis being defined by first bearing and a first motor for actuating rotation of the first member relative to the body about the first axis of rotation. A surface sensing device is attachable to the first member such that the surface sensing device can move with the first member, relative to the body. The first motor may include a first magnet and at least one metal coil spaced apart along the first axis and mounted such that the first magnet and the at least one metal coil are moveable relative to one another.
Abstract:
A rotation detection kit, comprising a source for generating at least a first polarized beam emitted along a propagation axis, a receiver comprising at least a first beam intensity sensor and an analyzer. The analyzer comprises a first polarizer device for location in the at least first polarized beam between the source and at least first beam intensity sensor. The first polarizer device is configured such that the receiver can measure rotation between the source and the analyzer about a first axis that is non-parallel to the propagation axis based on the at least first beam intensity sensor's output.