Abstract:
A method of monitoring accelerations on a vessel includes measuring acceleration on the vessel using one or more sensors. The one or more sensors are communicatively coupled to a computing unit. Real-time acceleration information representative of an acceleration on the vessel based at least in part on the measured acceleration from the one or more sensors is generated. Acceleration prediction information representative of predicted wave slam using the computing unit is generated. Using the acceleration prediction information, automatic control of trim, steering, or throttle controls of the vessel is performed in a fashion computed to reduce the effects of the predicted wave slam.
Abstract:
A hull for low drag boats has, from bow to stern, a deep V-shaped keel (10) whose dead-rise angle decreases up to a flattened bottom (30) in the stern, and sides (20) comprising side chines (200) protruding downward from the flattened bottom that is not inclined upwards.
Abstract:
A watersports boat includes a hull having an underside extending from a forward bow to an aft transom along a longitudinal centerline. The underside defines a running surface that contacts water when the hull moves therein. The underside includes one or more features that enhance the boat's performance.
Abstract:
A hull form design which incorporates bi-lateral semi-sponsons disposed on either side of a non-stepped V-shaped center hull section. The semi-sponsons extend the entire length of the hull form and comprise protrusions extending away from the center section. The semi-sponsons are delimited by longitudinal steps extending below the hull bottom an equal distance from the centerline on opposite sides of the hull. This design is a hybrid of conventional “V” hulls and catamarans and improves the roll and turn initiation time of convention monohull designs.
Abstract:
By including a Variable Second Pad Keel, a watercraft experiences a reduction in Slamming forces as well as generally improved Seakeeping and Seakindliness.
Abstract:
A hull for a planing type watercraft has a front lift surface, a high lift surface, and a back planing surface. The high lift surface is adjacent a rockered keel area and between the front lift surface and the back planing surface. The center of dynamic lift on the high lift surface is at or in front of a point which is 15% of the hull length behind a total center of gravity of the hull under loading. At least the back one third of the high lift surface is cambered, and a beam of the high lift surface is greater than two thirds of the maximum width of the hull. The average camber of the front lift surface, the high lift surface, and the back planing surface together is less than or equal to zero.