Abstract:
A method is disclosed for the preparation (by the utilization of a proper solvent system) of dry asymmetric membranes comprising a porous layer of interconnected crystals of polymer material. Membranes of many polymer materials may be optionally prepared either with or without a dense surface layer as one face thereof. In either case the porous layer is structured with graded porosity. A three-component casting solution is prepared containing the polymer, a first good volatile solvent for the polymer and (relative to the first solvent) a poor less-volatile solvent for the polymer, which is miscible with the good solvent. A membrane is cast, allowed to desolvate for a short time and is then immersed in a leaching agent, that is miscible with both the aforementioned solvents but is a non-solvent for the polymer. The membrane is then permitted to dry.
Abstract:
ASYMMETRIC MEMBRANES ARE PREPARED FROM NON-SELECTIVE THERMALLY GELLED SUBSTRATES OF A CELLULOSE DERIVATIVE. AFTER LEACHING, THE SUBSTRATE IS ANNEALED AND THEN TREATED IN A DILUTE AQUEOUS SOLUTION OF EITHER P-DIOXANE, FORMIC ACIDS OR NITROMETHANE AT AN ELEVATED TEMPERATURE. THE RESULTING SEMIPERMEABLE MEMBRANE IS PARTICULARLY SUITED FOR DESALINATION BY REVERSE OSMOSIS.
Abstract:
Although polyolefin elastomers are widely employed commodity polymers, there are shortcomings of this class of polymers for certain applications. For example, the rheological properties of some polyolefin elastomers may be insufficient to provide the green strength or low shear viscosity necessary to form stable foams, or to provide sufficient viscosity modification effects when present in a solvent. Cationomeric modification of polyolefin elastomers may alleviate these difficulties. Such polyolefin elastomers may feature a random cationomeric polyolefin copolymer comprising at least a first monomer and a second monomer, in which the first monomer is a neutral monomer and the second monomer has a side chain bearing a cationic moiety. The polyolefin elastomers may be present in foamed polyolefin compositions comprising a gas component and/or in liquid compositions comprising a solvent in which the polyolefin elastomer is dissolved.
Abstract:
The further advancement of membrane separation processes requires the development of more selective membranes. In this study, membranes that take inspiration from biological systems and use multiple functionalities of unique chemical design to control solute transport through chemical factors in addition to steric factors are detailed. Specifically, copolymer materials tailor-made for the generation of nanofilters that possess a high density of well-defined pores lined by azido moieties allowed for the generation of chemically-patterned mosaic membranes in a rapid manner through the use of printing devices. By engineering the composition of the reactive ink solutions used for chemical functionalization, large areas of patterned membranes were generated in seconds rather than hours. Charge mosaic membranes were used as an example of this novel platform.
Abstract:
An aerogel and process of making the aerogel are provided. The aerogel is a polyimide aerogel having polyamide cross-links formed using a poly(maleic anhydride) cross-linker.
Abstract:
Composite materials including cellulose nanocrystals incorporated into a polymer aerogel scaffold, wherein the cellulose nanocrystals serve as a reinforcement agent to result in the formation of less dense aerogels, improve the tensile mechanical properties of aerogel films, and reduce aerogel shrinkage upon thermal exposure. After gelation, the gel is dried via a suitable method such as supercritical CO2 extraction, freeze drying or other method, to produce the CNC/polymer composite aerogel. Properties of the composite aerogel can be tailored via surface modification of the cellulose nanocrystals as well as through the backbone structure of the polymer.
Abstract:
The invention relates to a method for removing diluent from a polymer extrudate, especially in connection with a process for producing a microporous membrane. The method involves contacting the extrudate with a second solvent in a first stage; contacting the extrudate from the first stage with a third solvent in a second stage; conducting a first stream away from the first stage and/or conducting a second stream away from the second stage; and cooling at least a portion of the first and/or second stream and separating therefrom at least one of a first phase rich in the second solvent or a second phase rich in the third solvent.
Abstract:
Provided is a microporous material, e.g., a microporous sheet material, having a matrix of polyolefin, finely-divided, substantially water insoluble particulate filler, a network of interconnecting pores communicating throughout the microporous material, and at least one retrospectively identifiable taggant material embedded within the matrix, optionally the at least one taggant being unique to an end user for the microporous material, wherein the polyolefin is present in the microporous material in an amount of 20 to 35 weight percent, based on the weight of the microporous material. The taggant material provides a marker, signature or code that is capable of retrospective identification by machine, instrument or by the naked eye. Articles including the microporous material and processes for preparing the microporous material also are provided.
Abstract:
The present invention relates to a multi-layered microporous polyolefin film for a battery separator and a method for preparing the same. The microporous multi-layered film of the present invention has a characteristics to have both the low shutdown temperature conferred by the polyethylene and the high melt fracture temperature conferred by the polypropylene and heat-resistant filler. In addition, it has the high strength and stability conferred by the micropores prepared under wet process and the high permeability and high strength conferred by the macropores prepared under dry process. Therefore, this multi-layered film can be used effectively to manufacture a secondary battery with high capacity and high power.
Abstract:
A porous object comprising a three-dimensional network skeleton of a cured epoxy resin and having interconnecting pores, characterized in that the three-dimensional network skeleton forms a non-particle-aggregation type porous object constituted of a three-dimensional branched columnar structure, the proportion of aromatic-ring-derived carbon atoms to all the carbon atoms as a component of the cured epoxy resin is 0.10-0.65, and the porous object has a porosity of 20-80% and an average pore diameter of 0.5-50 μm.