Abstract:
A method for producing metal/ceramic composite materials includes an injection plunger; a casting chamber having an opening through which casting metal is poured in and a ceramic precursor product is shot in; and a die having a runner and a die cavity. A shot head is used to shoot ceramic powder into a die, so that the powder is compacted to form a porous preform. The preform is infiltrated with liquid metal under pressure in the die.
Abstract:
Often, metal matrix composites (MMC's) lack adequate machinability and possess excessive abrasiveness because hard ceramic materials, such as silicon carbide, are used as the reinforcement phase. To make a metal matrix composite body having a more machinable and less abrasive surface, an MMC comprising an aluminum nitride reinforcement is formed on the surface of the body. In one embodiment, a layer is provided to a permeable mass or preform at the surface at issue, the layer featuring at least a reduced loading of ceramic filler material, and sometimes no ceramic material at all. The reduced loading is achieved by incorporating a fugitive material into the coating layer. Molten matrix metal is caused to infiltrate the permeable mass or preform and the coating layer to produce a macrocomposite body comprising a metal matrix composite coating and substrate. The metal matrix composite coating layer is distinguishable from the metal matrix composite substrate material, both compositionally and in terms of resulting properties. Under spontaneous infiltration conditions, as defined herein, aluminum nitride forms in-situ in the infiltrated body, including the surface layer. The present coating technique, however, permits a thicker MMC surface layer to be produced than could be produced previously. The present MMC surface layer can be applied to virtually any reinforced or unreinforced aluminum or aluminum alloy body.
Abstract:
The specification and drawings describe and show an embodiment of and method of forming a liquid flow through heat exchanger structure cast in a metal matrix composite. The composite comprises a preform reinforcement material infiltrated with molten metal. The composite reinforcement material is injection molded around the heat exchanger structure allowing for intimate contact between the composite and structure. The composite formed has a specific coefficient of thermal expansion to match an active heat-generating device mounted thereon. The present invention allows for enhanced thermal and mechanical properties by eliminating voids or gaps at the composite to heat exchanger structure interface, these voids or gaps being present in prior art fabrication methods or induced by usage due to thermal cycling of prior art composites. It is emphasized that this abstract is provided to comply with the rules requiring an abstract, which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
Abstract:
An apparatus for mixing particles in a liquid or semi-liquid medium, such as ceramic reinforcing particles in a molten metal or metal alloy matrix for the production of stir-cast metal matrix composite (MMC) materials. The particles can be introduced under the surface of the matrix by feeding the particles through the inner passage of a rotatable hollow impeller tube. The impeller tube is terminated at its lower end by an impeller head that includes teeth positioned proximate to an impeller base. The particles enter the matrix through a shear region in and around the volume between the impeller base and the impeller head. The rotating impeller and the high shear force thereby created wet the particles in the composite matrix and effect homogenization of the composite matrix. The present invention may be practiced either under vacuum or atmospheric pressure.
Abstract:
An impermeable ceramic mold is disposed within a steel die and used in a process for pressure casting of elevated melting temperature alloys and pressure infiltration casting of elevated melting temperature alloys having wear resistant particles, included therewith. The ceramic mold provides an insulation layer between the molten metal and the steel die, and prevents welding between the molten metal and the die. The alloy steel die encloses the ceramic mold and provides the strength needed to resist the pressures generated during pressure infiltration casting.
Abstract:
The specification and drawings describe and show an embodiment of and method of forming a liquid flow through heat exchanger structure cast in a metal matrix composite. The composite comprises a preform reinforcement material infiltrated with molten metal. The composite reinforcement material is injection molded around the heat exchanger structure allowing for intimate contact between the composite and structure. The composite formed has a specific coefficient of thermal expansion to match active heat-generating device(s) mounted thereon. The present invention allows for enhanced thermal and mechanical properties by eliminating voids or gaps at the composite to heat exchanger structure interface, these voids or gaps being present in prior art fabrication methods or induced by usage due to thermal cycling of prior art composites.
Abstract:
A method for producing a tantalum sputtering component includes a minimum of three stages each of which include a deformation step followed by an inert atmosphere high-temperature anneal. Temperatures of each of the anneal steps can be different from one another. A tantalum sputtering component includes a mean grain size of less than about 100 microns and a uniform texture throughout the component thickness. The uniform texture can be predominately null111null .
Abstract:
A free machining aluminum alloy contains an effective amount of one or more high melting point constituents that provide enhanced machining capability. The high melting point constituents occupy from about 0.1 to about 3.0 volume percent of the aluminum alloy. The constituents can be any material that is essentially insoluble in the aluminum alloy matrix so as to form a discontinuity and one that will resist deformation during machining to enhance the formation of voids between the matrix and the free machining constituents. The constituents include elements, nitrides, oxides, borides, carbides, silicides, aluminides and combinations thereof that have a high melting point and high strength and low solubility in aluminum at the elevated temperature so that the constituents resist deformation during the machining operation. The free machining aluminum alloy can be formed as a workpiece and subjected to any machining operation.
Abstract:
A free machining aluminum alloy contains an effective amount of one or more high melting point constituents that provide enhanced machining capability. The high melting point constituents occupy from about 0.1 to about 3.0 volume percent of the aluminum alloy. The constituents can be any material that is essentially insoluble in the aluminum alloy matrix so as to form a discontinuity and one that will resist deformation during machining to enhance the formation of voids between the matrix and the free machining constituents. The constituents include elements, nitrides, oxides, borides, carbides, silicides, aluminides and combinations thereof that have a high melting point and high strength and low solubility in aluminum at the elevated temperature so that the constituents resist deformation during the machining operation. The free machining aluminum alloy can be formed as a workpiece and subjected to any machining operation.
Abstract:
Ceramic oxide pre-forms comprising substantially continuous, alpha alumina fibers, and methods for making the same. The ceramic oxide pre-forms are useful, for example, as in making metal matrix composites reinforced with substantially continuous, alpha alumina fibers.