Abstract:
The present invention provides a method for forming wellbores. In one method, one or more wellbores are drilled along preplanned paths based in part upon seismic surveys performed from the surface. An acoustic transmitter conveyed in such wellbores transmits acoustic signals at a one or more frequencies within a range of frequencies at a plurality of spaced locations. A plurality of substantially serially spaced receivers in the wellbores and/or at surface receive signals reflected by the subsurface formations. The sensors may be permanently installed in the boreholes and could be fiber optic devices. The receiver signals are processed by conventional geophysical processing methods to obtain information about the subsurface formations. This information is utilized to update any prior seismographs to obtain higher resolution seismographs. The improved seismographs are then used to determine the profiles of the production wellbores to be drilled. Borehole seismic imaging may then be used to further improve the seismographs and to plan future wellbores. Crosswell tomography may be utilized to further update the seismographs to manage the reservoirs. The permanently installed sensors may also be used to monitor the progress of fracturing in nearby wells and thereby provide the necessary information for controlling fracturing operations.
Abstract:
An advisor system and method for determining reservoir properties includes a processor accessible to a tutorial system module and an expert system module. An input/output interface accesses directly with the tutorial system module and with the expert system module through a bridge. The expert system module includes a "help" utility, a rule base, a correlations library and a program interface between the library and rule base. Based on the input, the rule base selects correlation subroutines from the correlation routine library necessary to determine the reservoir properties. The advisor system can provide advice on using available Pressure-Volume-temperature (PVT) laboratory reports and location of the reservoir property in the PVT laboratory report.
Abstract:
A method is provided for simulating a linear solution gas curve for the determination of the gas-oil ratio for a crude oil well at any pressure using only surface measurements of the well's annular gas rate, a determination of the flowing bottom hole pressure, and knowledge of the bubble-point pressure. From the resulting curve, relationships can be formulated for determining the total produced gas rate. In an alternate embodiment, knowing the total gas rate for a crude oil well, a solution gas curve is simulated and the above relationships can be applied in reverse manner to predict several well characteristics, including either of the crude oil bubble-point pressure, the flowing bottom hole pressure, or the annular gas rate.
Abstract:
A new drill stem test apparatus and corresponding method includes a dual coaxial coiled tubing adapted to be disposed in the wellbore. The dual coaxial coiled tubing includes an inner coiled tubing, and an outer coiled tubing surrounding and enclosing the inner coiled tubing and forming an annular space which is located between the inner coiled tubing and the outer coiled tubing. The annular space is adapted to contain a pressurized kill fluid. A first end of the outer coiled tubing is sealed by a sealing element to a first end of the inner coiled tubing, the end of the inner coiled tubing extending beyond the sealing element and adapted to receive a formation fluid. The first ends of the inner and outer coiled tubing are disposed in a wellbore. A second end of the inner and outer coiled tubing is wound onto a coiled tubing reel and is connected to a kill fluid valve and a formation fluid valve. When the kill fluid valve opens while the formation fluid valve is closed, a pressurized kill fluid fills and pressurizes the annular space between the inner and outer coiled tubing. While the kill fluid valve is still open, the formation fluid valve is opened. A formation fluid begins to flow from the formation through the inner coiled tubing and through the formation fluid valve. If the inner coiled tubing forms a hole and begins to leak formation fluid, the pressurized kill fluid in the annular space will prevent the formation fluid in the inner coiled tubing from leaking out of the interior of the inner coiled tubing and into the annular space.
Abstract:
A method and apparatus determines three phase holdup fractions and flow rates for the individual phases of a fluid flowing in a well. A logging tool comprising a temperature compensated gradiomanometer having a differential pressure detector comprised of two pressure sensors and a nuclear densitometer having a beam source is lowered into a wellbore. The differential pressure between the pressure sensors is measured and an average fluid density is determined. The attenuation of a beam propagating from the beam source through the fluid and to the beam detector is measured, and holdup fractions of the fluid are calculated. Flow rates for the individual phases are determined by adding a flowmeter, and multiplying each holdup fraction by the total flow rate.
Abstract:
The method involves introducing a pumping and measuring set into a production well fitted with a pipe or liner perforated in a part extending through a producing zone. This set is fastened to the end of a flow string and comprises an activation pump and at least one set for measuring the produced effluents. The improvement essentially consists in using secondary pumping means such as a positive-displacement type pump, for example, in order to suppress the pressure drop undergone by the effluents during passage through the measuring zone, which distorts the measured values and causes parasitic flows by bypassing between the liner and the wall of well. The extent of these leak rates can be measured through a variation of the flow rate of the positive-displacement pump.
Abstract:
Method and apparatus for logging a formation interval in a well when the fluids are produced therefrom by a downhole pump. The method comprises lowering into the well a tubing (10) carrying a downhole pump (14) and a logging assembly, the logging assembly comprising a support (31) releasably latched in the tubing at an upper position located a predetermined distance above the pump, a cable section (26) attached to the support and passing from the bore of the tubing to the well bore along the pump through a sealed passage (25), and a well logging tool (15) attached at the lower portion of the cable section in a protecting sleeve (28). When the pump is at the correct depth in the well, a cable is passed from the surface through the tubing and connected to the support (31) by means of a wet connector. The support is released from its upper latching position and lowered in the tubing for bringing the logging tool (15) to the formation interval (12). Then, the formation interval can be logged while fluids are pumped out from the interval by the downhole pump.
Abstract:
A method for providing improved measurement of oil, water, and gas flow rates in producing wells using thru-tubing wireline inflatable and retrievable packers or plugs to systematically isolate producing zones within a wellbore. Surface flow rates are measured before and after zonal isolation, with the zonal production rate determined by the measured difference in flow rate before and after isolation. Surface measurement of individual production zones allows greater accuracy in measuring multiphase flows, while at the same time allowing evaluation of reservoir properties of the lower, isolated zones.
Abstract:
A well logging process and device for use in a non-flowing production well, wherein the well is activated to trigger production of effluents on both sides of a first measuring arrangement, with at least a part of the effluents coming from upstream of the flow, relative to the measuring arrangement and being handled by the measuring arrangement.
Abstract:
The invention concerns a process for measuring the flow as a function of time of the several layers of a subterranean multilayer hydrocarbon-producing formation through which a well is drilled, and for determining the parameters of formation by comparison of trends in well behavior shown by actual measurements with trends in behavior established theoretically. The flow rate contributions of individual layers (1 to 5) are determined from cumulative measurements made above successive layers by a flowmeter (13) moved vertically within a wellbore. Experimental curves are derived that represent the relative variations in time of the flowrates of layers (.DELTA.q.sub.j) or groups of layers in the formation using flowrate measurement points obtained when a total flowrate variation (.DELTA.Q) has been imposed on the well at a given time between two given constant values. These experimental curves are then compared to theoretical model curves (G, H) established for various values of the characteristic parameters of a subterranean formation, to determine values of the parameters of the formation.