Abstract:
In accordance with some embodiments of the present disclosure a method of vibration control for a wellbore logging tool is disclosed. The method may include estimating one or more of an estimated position, an estimated velocity, and an estimated acceleration of the wellbore logging tool after the drive signal has been sent to the wellbore logging tool. The method may include generating an active dampening braking signal based, at least in part, on one or more of the estimated position, the estimated velocity, and the estimated acceleration of the wellbore logging tool.
Abstract:
Generally, the present disclosure is directed to noise isolation tools that may be used to minimize or even eliminate the detrimental effects that rogue noise events may have on the noise data acquired by a noise logging tool during a noise logging operation. In one illustrative embodiment, a noise isolation tool that is adapted to be used in a noise logging operation is disclosed, the noise isolation tool including, among other things, a body and at least one noise suppression element mounted on the body, the at least one noise suppression element having a substantially circular disc shaped configuration that is adapted to extend radially across at least a portion of a width of an annular space between the body and an inside surface of a wellbore casing during the noise logging operation.
Abstract:
An acoustic tool for evaluating a geologic formation includes a housing member disposed between transmitter and receiver sections of the acoustic tool. The housing member defines a change in direction in an acoustic path extending therethrough such that acoustic signals traveling through the housing member are delayed and disrupted. The delay and disruption may isolate the acoustic signals traveling through the housing member from acoustic signals traveling through the geologic formation. Thus, the acoustic tool may facilitate identification and evaluation of acoustic signals traveling through the geologic formation.
Abstract:
Systems and methods for detecting faults in the active damping of a logging tool are disclosed herein. A wellbore logging tool system comprises a processor, a memory, a wellbore logging tool comprising an acoustic transmitter, and a logging tool control module. The logging tool control module is operable to receive sensor signals from one or more sensors coupled to the wellbore logging tool after a damping control signal has been transmitted to the acoustic transmitter. The logging tool control module is also operable to determine one or more expected sensor signals, determine error values using the expected sensor signals and the sensor signals received from the one or more sensors, and compare the error values with one or more thresholds.
Abstract:
A system and method collects at least one measurement within a borehole formed in a formation. The system and method provides a drill collar made of a non-conductive or substantially non-conductive composite material positioned within the borehole. A downhole component is capable of collecting at least one measurement and is embedded within the composite material of the drill collar. The at least one measurement collectable by the downhole component is related to the borehole or the formation about the borehole.
Abstract:
An acoustic isolator section for an acoustic well logging tool, the isolator section comprising: an isolator comprising: (i) an isolator body; (ii) a mass; (iii) a resiliently deformable portion formed integrally with the isolator body; (iv) a movement limiter.
Abstract:
An attenuation apparatus, system, and method are disclosed. The attenuator is attached to a pipe and includes a housing that includes an inner sleeve and an outer sleeve. The attenuator includes one or more masses, to resonate when exposed to waves including acoustic frequency components.
Abstract:
A downhole receiver for gathering seismic and sonic data from inside a borehole includes a substantially tubular housing adapted for axial connection to a tool string, and one or more sensors. A damping element is provided to flexibly couple each sensor to the tubular housing. An actuator extends the one or more sensors substantially radially with respect to the tubular housing to clamp the sensors against the wall of the borehole. In selected embodiments, the sensors may be one or multiple component geophones, accelerometers, hydrophones, vibrometers, or the like.
Abstract:
A plurality of heavy mass irregularities attached to an inner wall of the drill collar attenuate waves traveling through the collar. The plurality of heavy mass irregularities are spaced and sized for the maximum attenuation of acoustic pulses in a predetermined frequency range. The mass irregularities may be rings secured to the inner surface of the collar by neck pieces, extending outwardly from the outer circumference of the ring. The mass irregularities may be made of steel or tungsten and are between six and ten in number. The spacing of the irregularities may lie between twelve and fourteen centimeters. A center pipe may be included to isolate the irregularities from the fluid flow associated with the drilling operation. The pipe may be of a soft material such as rubber to reduce transfer of acoustic noise along the drill string. The irregularities may be in an oil based fluid with the pipe fitting closely in the center of the rings. In another embodiment of the invention, each of the mass irregularities is attached to the drill collar over substantially the entire length of the mass irregularity, enabling the attenuation of high frequencies. In yet another embodiment of the invention, the attenuator comprises a substantially cylindrical body with a plurality of recesses on the inside and/or outside of the cylindrica body, with the length of the recesses selected to provide attenuation within a specified band. In another embodiment of the invention, the attenuator comprises a plurality of sections each having an inner diameter and an outer diameter, each section acting like a waveguide with an associated passband and reject-band.
Abstract:
Methods and apparatus for suppression of wave energy within a fluid-filled borehole using a low pressure acoustic barrier. In one embodiment, a flexible diaphragm type device is configured as an open bottomed tubular structure for disposition in a borehole to be filled with a gas to create a barrier to wave energy, including tube waves. In another embodiment, an expandable umbrella type device is used to define a chamber in which a gas is disposed. In yet another embodiment, a reverse acting bladder type device is suspended in the borehole. Due to its reverse acting properties, the bladder expands when internal pressure is reduced, and the reverse acting bladder device extends across the borehole to provide a low pressure wave energy barrier.