Abstract:
The present invention is embodied in ophthalmic lenses having a first lens surface that is described by a continuous, gradual increase in optical power that proceeds without inflection points of discontinuities across substantially the entire useable optical area of this lens surface, and an opposite surface of the lens configured to cooperate with the power gradation of the first surface to provide a desired prescription, including at least one stabilized area of optical power. The power gradation of the first surface increases from one edge of the useable area to substantially the opposite edge, and may increase according to linear or non-linear relationships. In another preferred embodiment, the two lens surfaces cooperate to create two stabilized areas of optical power, for a prescription with near-viewing and distance-viewing values.
Abstract:
A series of progressive ophthalmic lenses is proposed, which is indexed by optical power addition values of eyeglasses of spectacles to be made from these lenses. Each lens of the series determines a further gap between a value of the optical power for the near vision direction and a maximum value of the optical power which is obtained for a direction of gaze pointing below said near vision direction. The lenses of the series are adapted for postures of wearers that may vary as a function of the optical power addition values.
Abstract:
A plurality of to-be-evaluated lenses that differ in lens surface design from one another is prepared in an evaluation-value calculating step. Thereafter, a subject's predetermined biological information, e.g., brain waves, is measured for each of the to-be-evaluated lenses by allowing the subject to wear each of the lenses, and an evaluation value for each of the lenses is calculated relative to a predetermined index in the brain waves, for example, relative to a “state of being under stress.” Thereafter, a correlation between the calculated evaluation value and a lens surface shape is calculated as an index characteristic in a lens-surface-shape determining step. Thereafter, a lens surface shape of a suitable spectacle lens in the index is determined based on the index characteristic, and the lens surface shape is fed back as a shape of a to-be-evaluated lens of the evaluation-value calculating step.
Abstract:
An eyeglass lens and manufacturing method using epoxy aberrator includes two lenses with a variable index material, such as epoxy, sandwiched in between. The epoxy is then cured to different indexes of refraction that provide precise corrections for the patient's wavefront aberrations. The present invention further provides a method to produce an eyeglass that corrects higher order aberrations, such as those that occur when retinal tissue is damaged due to glaucoma or macular degeneration. The manufacturing method allows for many different applications including, but not limited to, supervision and transition lenses.
Abstract:
A lens that covers the front side of an eye, includes: a high light-transmissive region including an eyepoint; and a low light-transmissive region surrounding the entire circumference of the high light-transmissive region, a light blocking ratio in the low light-transmissive region being higher than the light blocking ratio in the high light-transmissive region, wherein the low light-transmissive region has a region where the light blocking ratio changes toward the periphery.
Abstract:
Aspects of the present invention provide multiple-layer (multi-layer) composite lenses comprising two or more materials and methods for making the same. A multi-layer composite lens of the present invention can use multiple surfaces (internal or external) to form optical elements that can contribute to a total desired add power. The multiple contributing optical elements can be aligned so as to be in optical communication to form multiple stable vision zones to enhance optical performance and the vision experience of the wearer. Distributing the total desired add power across multiple appropriately aligned optical elements that are in optical communication with one another can reduce the total distortion of the lens, minimize the number of optical discontinuities introduced, can reduce optical power jump as experienced by the wearer's eye when traversing any discontinuity, and can reduce the visibility of any introduced optical discontinuity as perceived by an observer looking at the wearer.
Abstract:
A method of designing and evaluating a progressive power lens where the intersection of the wearer's line of sight, and the refractive surface of the lens is the primary line of fixation (L), the positions upon the primary line of fixation corresponding to far-field vision and near-field vision are the points (F) and (ON), respectively, and the distance of the displacement of (ON) toward the nose in the horizontal direction relative to (F) is the inward shift (OI). Upon the principal meridian curve (M) passing through (F), the point at which the profile curve (H) passing through (ON) in the horizontal direction and (M) is (DN), the displacement of (DN) towards the nose in the horizontal direction relative to (F) is the inward shift (DH), and OI
Abstract:
An eye-side refractive surface 11 of a distance portion is concave and at least part of an eye-side refractive surface 3 of a near portion is a convex region 31 where one or both of principal meridians of the surface are convex. This provides a back surface progressive-power lens capable of solving disadvantages in terms of lens thickness, external appearance and the like in a back surface progressive-power lens in which the eye-side refractive surface is formed of a progressive-power surface.
Abstract:
A design method of a spectacle lens, includes: measuring an angle formed by a direction of a head of a person seeing the front without lens and a direction of the head of the person seeing an object located in a direction angled to the front direction of the person without lens to calculate a visual action index Mn according to the following equation (1) as an initial value; temporarily designing a spectacle lens based on the visual action index; and simulating visual action of the person wearing the temporarily designed spectacle lens and correcting the visual action index based on the simulation result M n = β n α n ( 1 ) wherein αn is an angle formed by the front direction of the person and a direction in which the object actually exists, βn is a rotation angle of the head of the person seeing the object without lens, and n represents the object.
Abstract translation:眼镜透镜的设计方法包括:测量由透镜前方观察人的头部的方向所形成的角度,以及观察位于与前方方向成角度的方向的人的头部的方向 没有透镜的人根据以下等式(1)计算视觉动作指数Mn作为初始值; 根据视觉动作指标临时设计眼镜片; 并模拟佩戴临时设计的眼镜镜片的人的视觉动作,并根据模拟结果M n =&bgr校正视觉动作指标; nαn(1)其中αn是由人的正面方向和物体实际存在的方向形成的角度,&n; n是观察没有透镜的物体的人的头部的旋转角度,n 代表物体。
Abstract:
Aspects of the present invention provide multiple-layer composite lenses comprising two or more materials and methods for making the same. A multi-layer composite lens of the present invention can use multiple surfaces to form optical elements that can contribute to a total desired add power. The multiple contributing elements can be aligned so as to be in optical communication to form multiple stable vision zones to enhance optical performance and vision experience of the wearer. Distributing the total desired add power across multiple appropriately aligned optical elements that are in optical communication with one another can reduce the total distortion of the lens, minimize the number of optical discontinuities introduced and reduce the visibility of any introduced optical discontinuity. A surface of the multiple-layer composite lens can comprise a combined progressive structure and substantially constant optical power structure or a cropped progressive structure.