Abstract:
An energy storage system includes a plurality of battery units; a plurality of thermistors detecting a temperature of the plurality of battery units; a multiplexer performing multiplexing on the plurality of thermistors, and connecting a thermistor selected from among the plurality of thermistors to a reference resistor; a power switch unit arranged between the reference resistor and a power voltage terminal; and a control signal input unit receiving a control signal applied to the multiplexer and the power switch unit, and receiving two or more control bits contained in the control signal. In the energy storage system, a temperature measurement operation is performed at a plurality of measurement positions, whereby a current state of a battery may be accurately detected, an entire circuit may be reduced and simplified, and low power consumption may be realized.
Abstract:
A power supply unit for use with thermostats or other like devices requiring power. A power supply unit may be designed to keep electromagnetic interference emissions at a minimum, particularly at a level that does not violate governmental regulations. A unit may be designed so that there is enough power for a triggering a switch at about a cross over point of a waveform of input power to the unit. Power for triggering may come from a storage source rather than line power to reduce emissions on the power line. Power for the storage source may be provided with power stealing. Power stealing may require switching transistors which can generate emissions. Gate signals to the transistors may be especially shaped to keep emissions from transistor switching at a minimum.
Abstract:
The present disclosure describes embodiments of an efficient power management system and method for fuel efficiency. The power management system comprises an energy storage unit, at least one renewable energy resource, a controller and an engine. The engine is configured to operate at varying speeds to provide mechanical energy to a variable speed DC generator to generate power to charge up the energy storage unit. The speed of the engine is varied in response to a speed reference determined by the controller.
Abstract:
According to one aspect, embodiments of the invention provide a UPS system comprising a first input, a second input, an output, a power module coupled to the first input, wherein the power module is configured to condition power provided to the input of the power module and provide conditioned power to an output of the power module, and a static bypass switch module selectively coupled to the first input and the second input, wherein, in a first mode of operation, the static bypass switch module is configured to couple the second input to the input of the power module, and provide a second input power to the input of the power module, and wherein, in a second mode of operation, the static bypass switch module is configured to provide a first input power to the output of the UPS system, through the bypass switch module, bypassing the power module.
Abstract:
A monolithically integrated circuit with one or more supply overrides without need of an override control pin to the IC is presented. The internal circuitry to control such an override is presented and various override conditions are also presented.
Abstract:
The present invention discloses a standby power supply circuit for a 2-wire bus intercom system and an apparatus thereof. The standby power supply circuit is separated into two power supply modules; in which the first power supply module is a power supply to standby circuit and the second power supply module is a power supply to operation circuit; said power supply to operation circuit is switched off by a constant current switch when the device load is at the standby status; and said power supply to standby circuit comprises a constant current circuit whose alternating current impedance is very large. The solutions of the present invention achieve larger alternating current impedance for the 2-wire intercom system, which can offer sufficient power for many device loads both in the conditions of operation and standby statuses.
Abstract:
A photovoltaic inverter is provided, having a controller, an auxiliary power and a buffering element. The auxiliary power provides power to the controller. The buffering element is coupled between a photovoltaic panel and the auxiliary power such that the buffering element stores energy output from the photovoltaic panel first during a startup period, and then stops storing energy output from the photovoltaic panel and provides the stored energy to the auxiliary power, thereby performing a maximum power point tracking procedure on the photovoltaic panel during a first period following the startup period, and feeds energy output from the photovoltaic panel to the auxiliary power during a second period following the first period thereby continuously performing the maximum power point tracking procedure on the photovoltaic panel by the controller.
Abstract:
A shutter device is provided for a bypass isolation automatic transfer switch. The shutter device comprises a frame and a shutter that is movably supported by the frame and that is configured to selectively cover and uncover conductors. At least one cam is movably supported by the frame and at least one shutter lever is interposed between the shutter and the at least one cam. The shutter lever is configured to move the shutter in response to movement of the cam.
Abstract:
Some embodiments relate to a remote annunciator 10 that includes an enclosure 11 and a control 12 within the enclosure 11. The control 12 receives signals S from a plurality of transfer switches 13A, 13B, 13C, 13D and at least one generator 14 that is connected to at least one of the transfer switches 13A, 13B, 13C, 13D. The control 12 displays a status of electrical connections that include the plurality of transfer switches 13A, 13B, 13C, 13D and the at least one generator 14. In some embodiments, the control 12 recognizes when the plurality of transfer switches 13A, 13B, 13C, 13D and the at least one generator 14 are connected to the control 12.
Abstract:
The present invention is directed to a welding-type power source that includes a power source housing and an engine arranged in the power source housing to supply electrical power. An energy storage device is included that is in rechargeable association with the internal combustion engine and arranged to provide welding-type power for at least a given period.