Abstract:
A modified and improved polarizier ellipsometer allows for improved signal quality and signal to noise performance. This improvement is based on rotating one polarizer relative to the other fixed polarizer to generate AC mode signals related to a thin film under analysis. The AC mode signal may be compared to a background signal and the ratio of sample signal to background signal used to provide a more accurate assessment of film thickness. The normalized AC signal for an unknown thickness may be compared to a standard curve generated for a film of similar optical properties for an exact thickness determination or may be used directly to report a relative thickness value. Other modifications of the improved polarizer ellipsometer of the invention are also described where one or both of the fixed polarizers are removed to improve the signal intensity through reduction of the number of optical components. These modifications are designed to address specific thin film and substrate combinations.
Abstract:
An ellipsometer for measuring the complex refractive index of a sample and thin film thickness according to the invention. The ellipsometer includes a linear polarized light source, a reference analyzer, a polarization analyzer and a light direction controller. The linear polarized light source used to generate a measuring beam for detecting the sample. The phase modulator used to control the phase of the measuring beam thereby to generate a sampling beam. The reference analyzer used to generate a reference beam according to part of the sampling beam thereby to adjust the intensity of the sampling beam. The polarization analyzer used to analyze the phase, polarization and intensity of the sampling beam after the sampling beam is reflected by the sample. The light direction controller used to control the angle and direction of the sampling beam with respect to the sample, wherein the sampling beam is reflected by the sample to enter the light direction controller, and thereafter the sampling beam is reflected by the light direction controller and re-reflected by the sample to enter the polarization analyzer along an original optical path, but toward an opposite direction.
Abstract:
The surface form of a semiconductor thin film such as a polysilicon film 13 formed on a semiconductor substrate 11 is measured through spectro-ellipsometry or measured by performing an IPA quantitative analysis through GC. Mass (gas chromatography) after exposing the semiconductor thin film to IPA (isopropyl alcohol) vapor and drying the semiconductor thin film. Through either of these methods the surface form of the polysilicon film easily and quickly measured.
Abstract:
The present invention provides a urinalysis apparatus easy to maintain and manage without using any supplies such as the test paper, in which the concentration of an optically active substance in urine is determined by measuring the angle of rotation of the urine. Also, a polarimeter and a urinalysis apparatus which are reliable, compact and inexpensive are provided by using a polarimeter including means for transmitting the polarized light through a specimen, applying a magnetic field to the specimen and detecting the change in the direction of light polarization due to the application of the magnetic field.
Abstract:
A linearly polarized light is condensed by a lens 4 and set incident on a liquid crystal sample 5 with the incident angle being distributed continuously. The incident angle dependence of the polarization of the transmitted light is measured by a method of rotating an analyzer and the like, and thereby a pretilt angle of the liquid crystal sample is determined.
Abstract:
A film thickness measuring apparatus is provided with a housing which is made up of a base plate and outer cases, and which substantially shuts off the internal region thereof from the outside air, an introduction stage on which a cassette C is mounted, the cassette containing a plurality of substrates which have thin films formed thereon, a measurement stage which is arranged inside the housing and on which the substrate is placed for measuring the film thickness of the thin film, and a conveyance mechanism, arranged inside the housing, for moving the substrates between the inside of the cassette and the measurement stage. A film thickness measuring mechanism is arranged inside the housing. The film thickness measuring mechanism comprises a light emitting mechanism and a detector. The light emitting mechanism includes a laser light source for emitting a laser beam to the thin film on a wafer placed on the measurement stage. The detector detects light reflected from the thin film. On the basis of the information detected by the detector, the film thickness measuring mechanism measures the thickness of the thin film in a non-contact manner. A filter unit is arranged in the housing and located above the measurement stage. Through this filter unit, pure air free of gaseous organic matter is supplied and guided to the region above the measurement stage.
Abstract:
An optical measurement system is disclosed for evaluating samples with multi-layer thin film stacks. The optical measurement system includes a reference ellipsometer and one or more non-contact optical measurement devices. The reference ellipsometer is used to calibrate the other optical measurement devices. Once calibration is completed, the system can be used to analyze multi-layer thin film stacks. In particular, the reference ellipsometer provides a measurement which can be used to determine the total optical thickness of the stack. Using that information coupled with the measurements made by the other optical measurement devices, more accurate information about individual layers can be obtained.
Abstract:
An in-line optical fiber polarimeter comprises a plurality of fiber gratings and a single wave plate, disposed sequentially along a length of optical fiber. The fiber gratings are precisely oriented and have a predetermined grating period such that each grating functions to out-couple a predetermined portion of the optical signal passing through the polarimeter. A separate detector is associated with each grating to measure the out-coupled signal. The four Stokes parameters can be determined from the set of measurements and then used to determine to state of polarization of an optical signal passing through the polarimeter.
Abstract:
A polarimeter includes a prism (32) for separating the incident light beam (21) having a Stokes vector (S) into a reflected beam (22) and a transmitted beam (23), the prism not inducing any interferential effect and the transmitted beam being subjected to at least a reflection internal to the prism. The polarimeter also include two final separators (3, 4) for separating respectively each of the reflected beam and the transmitted beam into at least two final beams (25-28), detecting means (5-8) for measuring the intensity levels of the final beams and a processing unit (9) producing the Stokes vector of the light to be measured. Preferably, the reflections internal to the prism (32) are either total reflections, or reflections on a thick absorbing layer. The invention also includes a method for measuring light beam polarization states.
Abstract:
In-line optical polarimeters and techniques for calibrating such polarimeters are described. In one implementation a polarimeter integrates components in free space to enhance device performance.