摘要:
The application provides an enzyme immobilization carrier and a preparation method thereof, an immobilized enzyme and a preparation method thereof. The above enzyme immobilization carrier is obtained by an amino modification or a cyanuric chloride modification of super-crosslinked polyvinyl alcohol. The use of the enzyme immobilization carrier provided by the application may effectively improve the stability and reusability of the immobilized enzyme. Moreover, due to the use of the form of enzyme covalent linkage, compared with an embedding method, the preparation method is no need for chemical reagent immersion and the like, it is beneficial to maintain the own activity of the enzyme, and promote the immobilized enzyme to have the better activity while the stability and reusability are kept.
摘要:
Provided is a method for synthesizing a chiral amine compound. A transaminase is used to transaminate a ketone substrate under the action of an amino donor, to obtain the chiral amine compound; and the conserved amino acid sequence region of the transaminase at least includes a region 1 (MAGLWCVN) and a region 2 (YNTFFKT). With the transaminase with the specific conserved amino acid sequence region to synthesize a large sterically hindered chiral amine, the enzyme catalytic reaction volume is small, the synthesizing route is short, the product yield is high, a high-cost noble metal is not required for catalysis under the synthesizing conditions, three wastes are reduced, and the production cost is saved.
摘要:
Provided are a transaminase mutant and an application thereof. Compared with an amino acid sequence shown in SEQ ID NO:1, an amino acid sequence of the transaminase mutant includes at least one of the following mutation sites: L166, K149, K146, A168, H73, F133, H82, E24, V194, T294, A295, G235 and F236. The mutant of the present invention has the improved catalytic activity for a transammonization reaction of ketone substrates, and is suitable for industrial production of chiral amines.
摘要:
Disclosed are an etelcalcetide intermediate and a method for synthesizing etelcalcetide. The etelcalcetide intermediate is Fmoc-D-Cys(S—S—(N-Boc)-L-Cys(OtBu))-OH. The method for synthesizing the etelcalcetide includes the following steps: using N-Boc-L-Cqs-OtBu as a starting material to generate a primary product of a formula (A) by means of a substitution reaction, herein R is S-Py or Cl; and performing a coupling reaction on the primary product and Fmoc-D-Cys-OH amino acid to obtain Fmoc-D-Cys(S—S—(N-Boc)-L-Cys(OtBu))-OH. The key intermediate is used for synthesizing the etelcalcetide, which may improve the purity and the yield. It is important that the raw materials for synthesizing the key intermediate are cheap and readily available, and the process is simple.
摘要:
Disclosed are a borohydride reduction stabilizing system and a method for reducing an ester to an alcohol. The borohydride reduction stabilizing system includes: a borohydride reducing agent and a stabilizing agent for stabilizing the borohydride reducing agent. The borohydride reducing agent is sodium borohydride or potassium borohydride. The stabilizing agent is an alkali metal salt of an alcohol. By adding the alkali metal salt of the alcohol, such as sodium alkoxide or potassium alkoxide, on the basis of an existing sodium/potassium borohydride reducing agent, the sodium/potassium borohydride reducing agent may be kept stable without being decomposed under the condition of increased temperature, so that on the one hand, the reducing activity is maintained in a relatively high state, and the condition of excessive use is reduced, and on the other hand, the generation of hydrogen is reduced, and the process risks are reduced.
摘要:
An amino acid sequence of the monooxygenase mutant is obtained by mutation of an amino acid sequence shown in SEQ ID NO: 1, and the mutation at least includes one of the following mutation sites: 45-th site, 95-th site, 106-th site, 108-th site, 114-th site, 186-th site, 190-th site, 191-th site, 249-th site, 257-th site, 393-th site, 436-th site, 499-th site, 500-th site, 501-th site, 503-th site, 504-th site, 559-th site, and 560-th site.
摘要:
Provided are a proline hydroxylase and uses thereof. The proline hydroxylase comprises (a) a protein having the amino acid sequence as shown in SEQ ID NO: 2; (b) a protein having an amino acid sequence of SEQ HD NO: 2 with a mutation of one or more amino acids and having a proline hydroxylase activity; or (c) a protein retaining the mutation of one or more amino acids as in (b), and having the proline hydroxylase activity and having at least 78% homology with the amino acid sequence of the protein in (b). Protein having the amino acid sequence as shown in SEQ HD NO: 2 and mutants obtained by genetically engineering have higher catalytic specificity or significantly increased catalytic activity when compared to proline hydroxylases in prior art.
摘要:
The present invention relates to a preparation method for a chiral intermediate for use in statins, acquired with chloroacetic acid and benzyl alcohol as starting materials via a series of reactions, namely etherification, condensation, substitution, and asymmetric reduction. The preparation method provided in the present invention has a novel route of synthesis, allows an intermediate compound to be introduced conveniently into the chiral center of a glycol via enzyme reduction, and not only is low in costs, but also is reliable in quality. The route of synthesis provided in the present invention uses raw materials of low costs, has an easy to operate process, and provides a final product of great purity and high yield.
摘要:
The application provides a Diketoreductase (DKR) mutant, its nucleotide coding sequence, and an expression cassette, recombinant vector and host cell containing the sequence, as well as a method for application of the mutant to the preparation of 3R,5S-dicarbonyl compound. An ee value of the obtained 3R,5S-dicarbonyl compound is higher than 99%, and a de value is about 90%. The DKR mutant is a key pharmaceutical intermediate, and particularly provides an efficient catalyst for synthesis of a chiral dicarbonyl hexanoic acid chain of a statin drug.
摘要:
Provided are an intermediate compound for preparing rosuvastatin calcium and a preparation method of the rosuvastatin calcium. The method comprises: using the foregoing intermediate compound as a raw material, and subjecting the raw material to a step of Wittig reaction, a step of protecting group removal and hydrolysis and a step of calcium salt formation, so as to obtain the rosuvastatin calcium. The product, which is prepared from the intermediate compound, can be substantially enhanced in stereoselectivity and also notably improved in purity and yield; in addition, the method for preparing rosuvastatin calcium from the intermediate compound is simple, convenient and low in cost.