Abstract:
In accordance with embodiments disclosed herein, there are provided apparatus, systems and methods for implementing distributed wireless data sharing and control systems. Methodologies may include, for example, means for performing operations at a first wireless node having at least a processor and a memory therein, in which such operations include collecting measurements of a wireless environment at the first wireless node; determining a current configuration of the first wireless node; receiving state information from a second wireless node, in which the received state information describes a configuration of the second wireless node and further describes collected measurements of a wireless environment at the second wireless node; with the operations further including analyzing the collected measurements of the wireless environment at the first wireless node and also analyzing the state information received from the second wireless node, the analysis being used to determine one or more modifications to the current configuration of the first wireless node; adopting a modified configuration at the first wireless node by updating the current configuration of the first wireless node with the determined one or more modifications; and communicating first node state information to the second wireless node, in which the first node state information describes the modified configuration adopted by the first wireless node and the collected measurements of the wireless environment at the first wireless node. Other related embodiments are disclosed.
Abstract:
Data indicative of a level of stability of a DSL link is received. Based on the received data, it is determined whether the data indicates a level of stability of the DSL link that is above or below and minimum threshold. If the level of stability of the DSL link is below the minimum threshold, die noise associated with the DSL link before the time of failure is compared with the noise of failure. If the difference between the noise before and after the time of failure exceeds a threshold, then the difference in noise is characterized as a stationary noise associated with the DSL link. However, if the difference between the noise before and after the time of failure is below the threshold, a determination is made whether the failure is associated with a loss of power to the DSL link or a severe impulse noise event the difference in noise is characterized accordingly. Finally, the characterization of the noise associated with the DSL link is preserved for subsequent possible reconfiguration of the DSL link to improve link stability.
Abstract:
A method for detecting a defect in wiring in a DSL system. The method includes collecting data including instantaneous values, a history of values, and/or parameters relating to a central office or customer premises equipment, analyzing a line for a wiring defect based on the collected data, and reporting whether or not a wiring defect was detected responsive to the analyzing step.
Abstract:
An apparatus comprises at least one vectoring engine and a cross-connect coupled to the vectoring engine. The cross-connect is to couple with each of a plurality of customer premises equipment (CPE) devices via a respective DSL loop. An interface is to receive instructions for the cross-connect to couple the vectoring engine to a nonoverlapping subset of the CPE devices via the respective DSL loops. The interface is further to receive instructions for the vectoring engine to apply vectoring to the DSL loop via which to couple one of the CPE devices to the cross-connect.
Abstract:
In accordance with embodiments disclosed herein, there are provided apparatus, systems and methods for impulse noise detection and mitigation. For example, in one embodiment such means include, means for detecting impulse noise; means for classifying the detected impulse noise into one of a plurality of impulse noise classes affecting communications on a Digital Subscriber Line (DSL line); means for selecting a noise mitigation strategy from among a plurality of noise mitigation strategies; means for applying the selected noise mitigation strategy; and means for validating application of the noise mitigation strategy.
Abstract:
Methods and systems for twisted pair telephone line diagnostics based on patterns of line data occurring over time. An observed data distribution is classified as periodic or based on modeled distributions previously determined to correspond to a known line activity, fault type, or fault location. A disruption or parameter value pattern is classified through statistical inference of operational and performance data collected from the line. Where the disruption and/or parameter value(s) correlate with a time the customer is at the customer premises, an inference is made that the line fault causing the disruption is more likely at the CPE than at the Central Office. Where the disruption distribution is classified as being a result of human activities initiated on the line, a fault condition associated with the activity is inferred. Where a disruption pattern is correlated with human initiated plain old telephone service (POTS), a micro-filter problem is inferred for the line.
Abstract:
Methods, apparatus and computer program products allow a user of DSL or the like to implement user preferences to the extent feasible in light of operational limits and conditions. In some embodiments, an operational profile is imposed on the user. User preference data is evaluated to determine the extent to which one or more user preferences can be implemented in light of the operational profile. One or more controllers can assist in collecting user preference data, evaluating the user preference data, operational data and other data and information, and implementing user preferences as feasible. Evaluation of the user preference data and operational profile and/or data can include considering the compatibility of the user's preferences and the operational profile and/or data. Controllers assisting users can include a local controller at the user's location, one or more upstream-end local controllers, one or more remote location controllers, and/or one or more other downstream-end device controllers at locations other than the user's location. Data and information can be shared among the various controllers, either using the DSL system itself or using a proprietary or other alternative data system.
Abstract:
Operator-controlled implementations of user preferences are provided when feasible. User preference data is obtained by the operator and compared to operational characteristics and parameters of a communication system, such as a DSL system, to determine whether one or more of the user preferences can be implemented in the communication system. When implementation of a user preference would violate operational rules of the system, or where implementation would adversely affect system operation, the preference need not be implemented. However, when a user preference can be implemented in the system without causing problems, the operator can implement (or permit another party to implement) the user preference to effect the user's desires. The user preference data can be obtained directly from users (for example, by surveys and other direct user feedback) or can be obtained indirectly (for example, by constructing a Hidden Markov Model that shows user preferences). The operator may collect the user preference data from a user set (for example, a single user or a plurality of users). The user preference data can be compared to 2 or more performance metrics that can be adjusted, to the extent feasible, to implement the user preference data.
Abstract:
In accordance with embodiments disclosed herein, there are provided methods, systems, mechanisms, techniques, and apparatuses for traffic aggregation on multiple WAN backhauls and multiple distinct LAN networks; for traffic load balancing on multiple WAN backhauls and multiple distinct LAN networks; and for performing self-healing operations utilizing multiple WAN backhauls serving multiple distinct LAN networks. For example, in one embodiment, a first Local Area Network (LAN) access device is to establish a first LAN; a second LAN access device is to establish a second LAN; a first Wide Area Network (WAN) backhaul connection is to provide the first LAN access device with WAN connectivity; a second WAN backhaul connection is to provide the second LAN access device with WAN connectivity; and a traffic aggregation unit is to form a logically bonded WAN interface over the first WAN backhaul and the second WAN backhaul. In some embodiments an optional traffic de-aggregation unit may be used.
Abstract:
Described herein are apparatus, system, and method for optimizing performance of one or more communication units by a remote server. The method comprises: collecting data from the one or more communication units; generating a policy, for each of the one or more communication units, based on the collected data; and sending the policy to each of the one or more communication units, wherein the policy comprises conditions for operation of the one or more communication units, wherein the one or more communication units implement the policy according to time-varying data. The system comprises: one or more communication units; and a server operable to communicate with the one or more communication units, wherein the server comprises: a memory; and a processor, coupled to the memory, and operable to perform the method discussed above.