Abstract:
Application of a redox polymer of the poly-[Me(R-Salen)] type onto a conducting substrate is accomplished by the method of electrochemical polymerization. Said polymerization is accomplished by supplying a voltage between the substrate (that serves as an anode) and a counter electrode (that serves as a cathode), with both of them being submerged into the electrolyte containing an organic solvent and the compounds capable of dissolving in said solvent. The process is accompanied by the production of electrochemically inactive (at concentrations of no less than 0.01 mol/l) ions within the range of potentials from −3.0 V to +1.5 V, and metal complex [Me(R-Salen)] dissolved at a concentration of no less than 5·10−5 mol/l, (where: Me is a transition metal having at least two different degrees of oxidation, R is an electron-donating substituent, Salen is a residue of bis-(salicylaldehyde)-ethylenediamine in Schiff's base.
Abstract:
A method for producing an electrode for an electrochemical element absorbs monomers for polymerization on a surface having a specific surface area of 100 to 3000 m2g−1 and having an average pore diameter in the range of 0.4 to 100 nm, performing electrolysis polymerization by applying pulse voltage, and forming a conductive polymer layer on the surface of the conductive porous material, forming a thin and uniform electrode film. In a method for producing an electrochemical element, a conductive polymer layer is formed on the conductive porous material by absorbing monomers for polymerization on a surface of a conductive porous material having a specific surface area and pore diameter as above forming a electrochemical cell by using the conductive porous material, the monomers are absorbed in the pores, putting the electrochemical cell and the electrolyte solution in an outer casing, and performing electrolysis polymerization of the monomers in the electrolyte solution.
Abstract:
The sensor has four electrodes arranged on a common base, three of which are made as closed circuits, placed one into another, whereas the fourth electrode is placed inside the smallest circuit. The external and the central electrodes form a pair of current-feeding electrodes, whereas the electrodes disposed between them form a pair of measuring electrodes. The second design option of the sensor has three electrodes, two of which are made as closed circuits placed one into another, whereas the third electrode is placed inside the electrode that is smaller. The external and the central electrodes form a pair of current-feeding electrodes, and the electrode arranged between them together with the external or the central electrode form a pair of measuring electrodes. The design of sensors makes it possible to use them in combination with biological signal sensors of non-rheographic modality, for example, pulse wave, temperature. The sensor may be incorporated in wristwatch or bracelet.
Abstract:
The invention is an electrochemical capacitor with its electrodes made on a conducting substrate with a layer of a redox polymer of the poly[Me(R-Salen)] type deposited onto the substrate. Me is a transition metal (for example, Ni, Pd, Co, Cu, Fe), R is an electron-donating substituent (for example, CH3O—, C2H5O—, HO—, —CH3), Salen is a residue of bis(salicylaldehyde)-ethylendiamine in Schiff's base. The electrolyte comprises of an organic solvent, compounds capable of dissolving in such solvents with the resulting concentration of no less than 0.01 mol/l and dissociating with the formation of ions, which are electrochemically inactive within the range of potentials from −3.0 V to +1.5 V (for example, salts of tetramethyl ammonium, tetrapropyl ammonium, tetrabutyl ammonium), and a dissolved metal complex [Me(R-Salen)]. The method of using the capacitor contemplates periodically alternating the connection polarity of the electrodes, causing the electrochemical characteristics of the electrodes to regenerate.
Abstract:
Application of a redox polymer of the poly-[Me(R-Salen)] type onto a conducting substrate is accomplished by the method of electrochemical polymerization. Said polymerization is accomplished by supplying a voltage between the substrate (that serves as an anode) and a counter electrode (that serves as a cathode), with both of them being submerged into the electrolyte containing an organic solvent and the compounds capable of dissolving in said solvent. The process is accompanied by the production of electrochemically inactive (at concentrations of no less than 0.01 mol/l) ions within the range of potentials from −3.0 V to +1.5 V, and metal complex [Me(R-Salen)] dissolved at a concentration of no less than 5-10−5 mol/l, (where: Me is a transition metal having at least two different degrees of oxidation, R is an electron-donating substituent, Salen is a residue of bis-(salicylaldehyde)-ethylenediamine in Schiff's base.
Abstract:
Deposition of a redox polymer of the poly-Me(R-Salen) type onto a conducting substrate by electrochemical polymerization is disclosed. Said polymerization occurs at a voltage applied between the substrate and a counter-electrode, both of which are submerged into the electrolyte. The electrolyte contains an organic solvent, compounds capable of dissolving in the solvent and forming electrochemically inactive ions at concentrations of no less than 0.01 mol/l within the range of potentials from −3.0 V to +1.5 V, and a metal complex poly-[Me(R-Salen)] dissolved at a concentration of no less than 5×10−5 mole/liter. Me is transition metal having at least two different degrees of oxidation, R is an electron-donating substituent, Salen is a residue of bis(salicylaldehyde)-ethylenediamine in Schiff' s base). Deposition of the redox occurs in the electrolyte where the cations of the compounds have a diameter larger than that of the electrolyte cations of energy storing device containing the electrode.