摘要:
An ultra-miniature electrochemical cell and related fabrication method. The cell includes a cell case having a first cell electrode attached to an inside wall thereof. An electrode-header assembly is also disposed in the cell case. The electrode-header assembly includes an electrode plug providing a second cell electrode, a header assembly attached to the cell case, and a current collector embedded in the electrode plug and extending through the header assembly. The cell further includes an electrolyte-carrying separator disposed in cell case between the first and second electrodes. Advantageously, the second cell electrode may be fabricated using a punching process and joined to the current collector while constrained within tooling in order to minimize the risk of damage to the electrode during handling. This method facilitates the efficient, repeatable fabrication of small uniform electrodes and subsequent attachment of the electrodes to their associated current collectors. The method thus enables the production of electrodes having single millimeter thicknesses or less. Moreover, the method is compatible with many primary cell electrode materials, thereby allowing the production of primary power sources having a form factor and dimensions suitable for percutaneous injection.
摘要:
An electrochemical cell includes an anode, a cathode and an electrolyte operatively associated with the anode and the cathode. The cathode comprises a blend of a first electrochemically active fluorinated carbon material and one or more additional electrochemically active fluorinated carbon materials. The fluorinated carbon materials provide an electrochemical cell voltage characteristic that may be used to predict remaining energy capacity as the electrochemical cell discharges during service. Advantageously, the cathode does not require other electrochemically active materials to achieve the desired voltage characteristic, thereby preserving the favorable energy density properties of fluorinated carbon.
摘要:
A high power thermoelectric controller system is disclosed, capable of operating multiple thermoelectric cooler (TEC) devices, each with a maximum power demand greater than 200 watts. The controller system utilizes interleaved triggering of multiple pulse width modulated power conversion circuits in order to minimize switching transient currents. In another aspect, the system incorporates a novel combination of a PWM controller circuit and H-bridge switching network into a single circuit that reduces the number of components needed to provide closed-loop proportional control of multiple TEC devices in a temperature control system.
摘要:
A hybrid battery power source for implantable medical use provides a generally constant low internal resistance during discharge and avoids voltage delays of the type that develop as a result of run down-induced resistance increase in Li/SVO cells. The hybrid battery power source utilizes two batteries or cells, one being a primary cell of relatively high energy density and the other being a secondary cell of relatively low internal resistance that is rechargeable. The primary and secondary cells are connected in a parallel arrangement via a voltage boost/charge control circuit that is powered by the primary cell and adapted to charge the secondary cell while limiting charge/discharge excursions thereof in a manner that optimizes its output for high energy medical device use. The energy storage capacitors of the medical device in which the hybrid battery power source is situated are driven by the secondary cell. The primary cell is used to as an energy source for recharging the secondary cell.
摘要:
A hybrid battery power source for implantable medical use provides a generally constant low internal resistance during discharge and avoids voltage delays of the type that develop as a result of run down-induced resistance increase in Li/SVO cells. The hybrid battery power source utilizes two batteries or cells, one being a primary cell of relatively high energy density and the other being a secondary cell of relatively low internal resistance that is rechargeable. The primary and secondary cells are connected in a parallel arrangement via a voltage boost/charge control circuit that is powered by the primary cell and adapted to charge the secondary cell while limiting charge/discharge excursions thereof in a manner that optimizes its output for high energy medical device use. The energy storage capacitors of the medical device in which the hybrid battery power source is situated are driven by the secondary cell. The primary cell is used to as an energy source for recharging the secondary cell.
摘要:
A hybrid battery power source for implantable medical use provides a generally constant low internal resistance during discharge and avoids voltage delays of the type that develop as a result of run down-induced resistance increase in Li/SVO cells. The hybrid battery power source utilizes two batteries or cells, one being a primary cell of relatively high energy density and the other being a secondary cell of relatively low internal resistance that is rechargeable. The primary and secondary cells are connected in a parallel arrangement via a voltage boost/charge control circuit that is powered by the primary cell and adapted to charge the secondary cell while limiting charge/discharge excursions thereof in a manner that optimizes its output for high energy medical device use. The energy storage capacitors of the medical device in which the hybrid battery power source is situated are driven by the secondary cell. The primary cell is used to as an energy source for recharging the secondary cell.
摘要:
A hybrid battery power source for implantable medical use provides relatively stable resistance during discharge and avoids the voltage delays that develop as a result of variable resistance increase in Li/SVO cells. The hybrid battery power source utilizes two batteries or cells, one being a primary battery of relatively high energy density and the other being a rechargeable secondary battery of low relatively stable internal resistance. The primary and secondary batteries are connected in a parallel arrangement, preferably via an intermediate voltage boost circuit having an inductor and a pulse generating control circuit therein. The energy storage capacitors of the medical device in which the hybrid battery power source is situated are driven in whole or substantial part by the secondary battery. The primary battery is used to as an energy source for recharging the secondary battery. By arranging the two batteries in parallel, with one serving as a primary battery and the other as a rechargeable secondary battery, all the benefits of the defibrillatory impulse will be obtained and the deficiencies arising from variable voltage delay found in prior art implantable power sources will not be present.