摘要:
An MR Spectroscopy (MRS) system and approach is provided for diagnosing painful and non-painful discs in chronic, severe low back pain patients (DDD-MRS). A DDD-MRS pulse sequence generates and acquires DDD-MRS spectra within intervertebral disc nuclei for later signal processing and diagnostic analysis. An interfacing DDD-MRS signal processor receives output signals of the DDD-MRS spectra acquired and is configured to optimize signal-to-noise ratio by an automated system that selectively conducts optimal channel selection, phase and frequency correction, and frame editing as appropriate for a given acquisition series. A diagnostic processor calculates a diagnostic value for the disc based upon a weighted factor set of criteria that uses MRS data extracted from the acquired and processed MRS spectra for multiple chemicals that have been correlated to painful vs. non-painful discs. A display provides an indication of results for analyzed discs as an overlay onto a MRI image of the lumbar spine.
摘要:
Systems and methods are provided for processing a set of multiple serially acquired magnetic resonance spectroscopy (MRS) free induction decay (FID) frames from a multi-frame MRS acquisition series from a region of interest (ROI) in a subject, and for providing a post-processed MRS spectrum. Processing parameters are dynamically varied while measuring results to determine the optimal post-processed results. Spectral regions opposite water from chemical regions of interest are evaluated and used in at least one processing operation. Frequency shift error is estimated via spectral correlation between free induction decay (FID) frames and a reference spectrum. Multiple groups of FID frames within the acquired set are identified to different phases corresponding with a phase step cycle of the acquisition. Baseline correction is also performed via rank order filter (ROF) estimate and a polynomial fit. Sections of the ROF may be excluded from the polynomial fit, such as for example sections determined to be associated with relevant spectral peaks.
摘要:
A system and method for automating an appropriate voxel prescription in a uniquely definable region of interest (ROI) in a tissue of a patient is provided, such as for purpose of conducting magnetic resonance spectroscopy (MRS) in the ROI. The dimensions and coordinates of a single three dimensional rectilinear volume (voxel) within a single region of interest (ROI) are automatically identified. This is done, in some embodiments by: (1) applying statistically identified ROI search areas within a field of view (FOV); (2) image processing an MRI image to smooth the background and enhance a particular structure useful to define the ROI; (3) identifying a population of pixels that define the particular structure; (4) performing a statistical analysis of the pixel population to fit a 2D model such as an ellipsoid to the population and subsequently fit a rectilinear shape within the model; (5) repetiting elements (1) through (4) using multiple images that encompass the 3D ROI to create a 3D rectilinear shape; (6) a repetition of elements (1) through (5) for multiple ROIs with a common FOV. A manual interface may also be provided, allowing for override to replace by manual prescription, assistance to identify structures (e.g. clicking on disc levels), or modifying the automated voxel (e.g. modify location, shape, or one or more dimensions).
摘要:
Systems and methods are provided for processing a set of multiple serially acquired magnetic resonance spectroscopy (MRS) free induction decay (FID) frames from a multi-frame MRS acquisition series from a region of interest (ROI) in a subject, and for providing a post-processed MRS spectrum. Processing parameters are dynamically varied while measuring results to determine the optimal post-processed results. Spectral regions opposite water from chemical regions of interest are evaluated and used in at least one processing operation. Frequency shift error is estimated via spectral correlation between free induction decay (FID) frames and a reference spectrum. Multiple groups of FID frames within the acquired set are identified to different phases corresponding with a phase step cycle of the acquisition. Baseline correction is also performed via rank order filter (ROF) estimate and a polynomial fit. Sections of the ROF may be excluded from the polynomial fit, such as for example sections determined to be associated with relevant spectral peaks.
摘要:
An MR Spectroscopy (MRS) system and approach is provided for diagnosing painful and non-painful discs in chronic, severe low back pain patients (DDD-MRS). A DDD-MRS pulse sequence generates and acquires DDD-MRS spectra within intervertebral disc nuclei for later signal processing & diagnostic analysis. An interfacing DDD-MRS signal processor receives output signals of the DDD-MRS spectra acquired and is configured to optimize signal-to-noise ratio (SNR) by an automated system that selectively conducts optimal channel selection, phase and frequency correction, and frame editing as appropriate for a given acquisition series. A diagnostic processor calculates a diagnostic value for the disc based upon a weighted factor set of criteria that uses MRS data extracted from the acquired and processed MRS spectra along regions associated with multiple chemicals that have been correlated to painful vs. non-painful discs. A diagnostic display provides a scaled, color coded legend and indication of results for each disc analyzed as an overlay onto a mid-sagittal T2-weighted MRI image of the lumbar spine for the patient being diagnosed. Clinical application of the embodiments provides a non-invasive, objective, pain-free, reliable approach for diagnosing painful vs. non-painful discs by simply extending and enhancing the utility of otherwise standard MRI exams of the lumbar spine.
摘要:
A system and method for automating an appropriate voxel prescription in a uniquely definable region of interest (ROI) in a tissue of a patient is provided, such as for purpose of conducting magnetic resonance spectroscopy (MRS) in the ROI. The dimensions and coordinates of a single three dimensional rectilinear volume (voxel) within a single region of interest (ROI) are automatically identified. This is done, in some embodiments by: (1) applying statistically identified ROI search areas within a field of view (FOV); (2) image processing an MRI image to smooth the background and enhance a particular structure useful to define the ROI; (3) identifying a population of pixels that define the particular structure; (4) performing a statistical analysis of the pixel population to fit a 2D model such as an ellipsoid to the population and subsequently fit a rectilinear shape within the model; (5) repetiting elements (1) through (4) using multiple images that encompass the 3D ROI to create a 3D rectilinear shape; (6) a repetition of elements (1) through (5) for multiple ROIs with a common FOV. A manual interface may also be provided, allowing for override to replace by manual prescription, assistance to identify structures (e.g. clicking on disc levels), or modifying the automated voxel (e.g. modify location, shape, or one or more dimensions).