摘要:
A vertical-cavity surface-emitting laser (VCSEL) has an active region, first and second mirror stacks forming a resonant cavity with a radial variation in index forming a transverse optical mode, and a thin insulating slot within the cavity to constrict the current to a diameter less than the beam waist of the optical mode thereby improving device efficiency and preferentially supporting single mode operation. In one embodiment, an insulating slot is formed by etching or selectively oxidizing a thin aluminum-containing semiconductor layer in towards the center of a cylindrical mesa. The slot thickness is sufficiently thin that the large index discontinuity has little effect on the transverse optical-mode pattern. The slot may be placed near an axial standing-wave null to minimize the perturbation of the index discontinuity and allow the use of thicker slots. In a preferred embodiment, the current constriction, formed by the insulating slot, is located on the p-type side of the active region and has a diameter significantly less than the beam waist of the optical mode, thus minimizing outward diffusion of carriers and ensuring single transverse-mode operation of the laser by suppressing spatial hole burning.
摘要:
A long wavelength VCSEL according to the present invention is optically coupled to and optically pumped by a shorter wavelength, electrically pumped VCSEL. Short wavelength radiation emitted from the top surface of the underlying VCSEL is transmitted through the lower mirror of the long wavelength VCSEL. Long wavelength radiation is preferably emitted from the top surface of the long wavelength VCSEL. The two VCSELs are preferably joined together using a transparent optical adhesive, a wafer-fusing process, or a metal to metal bond.
摘要:
In a vertical-cavity surface-emitting laser (VCSEL) with an active region, and first and second mirror stacks forming a resonant cavity, the VCSEL having a radial electrode configuration with a first electrode disposed around the base of the first mirror stack near one side of the active region, a second electrode on the other side of the active region with a first contacting region and a second contacting region on each side of the active region in contact with the respective electrodes, each of the contacting regions providing a current path for distributed current through the active region, the improvement wherein there is a nonlinear grading of resistivity in at least one of the contacting regions between at least one of the electrodes and the active region. Specifically, in one embodiment, the first contacting region has a first layered section abutting the first electrode which is highly conductive to radial current flow and at least a second layered section between the first layered section and the active region which is more resistive to axial current flow than to radial current flow in the first layered section. In a further embodiment, one of the two contacting regions includes a layered section which is radially graded in resistivity so as to restrict the current injection to a radius less than that of the resonant cavity, thereby improving device efficiency and preferentially supporting single mode operation.
摘要:
A vertical-cavity surface-emitting laser (VCSEL) has an active region, first and second mirror stacks forming a resonant cavity with a radial variation in index forming a transverse optical mode, and a thin insulating slot within the cavity to constrict the current to a diameter less than the beam waist of the optical mode thereby improving device efficiency and preferentially supporting single mode operation. In one embodiment, an insulating slot is formed by etching or selectively oxidizing a thin aluminum-containing semiconductor layer in towards the center of a cylindrical mesa. The slot thickness is sufficiently thin that the large index discontinuity has little effect on the transverse optical-mode pattern. The slot may be placed near an axial standing-wave null to minimize the perturbation of the index discontinuity and allow the use of thicker slots. In a preferred embodiment, the current constriction, formed by the insulating slot, is located on the p-type side of the active region and has a diameter significantly less than the beam waist of the optical mode, thus minimizing outward diffusion of carriers and ensuring single transverse-mode operation of the laser by suppressing spatial hole burning.