Abstract:
Various designs of semiconductor lasers may comprise a waveguide having a front region that is configured to support a plurality of transverse laser cavity modes and a rear region that support only one transverse laser cavity mode. These front and rear regions may be disposed between front and rear reflectors and may provide optical gain. Some such designs may be useful for providing higher power single mode semiconductor lasers.
Abstract:
Various designs of semiconductor lasers may comprise a waveguide having a front region that is configured to support a plurality of transverse laser cavity modes and a rear region that support only one transverse laser cavity mode. These front and rear regions may be disposed between front and rear reflectors and may provide optical gain. Some such designs may be useful for providing higher power single mode semiconductor lasers.
Abstract:
The invention relates to a III-V heterostructure laser device (1) arranged in and/or on silicon, comprising: a III-V heterostructure gain medium (3); and an optical rib waveguide (11), arranged facing the gain medium (3) and comprising a slab waveguide (15) equipped with a longitudinal rib (17), the optical rib waveguide (11) being arranged in the silicon. The optical rib waveguide (11) is oriented so that at least one Bragg grating (19, 19a, 19b) is arranged on that side (21) of the slab waveguide (15) which is proximal relative to the gain medium (3) and in that the rib (17) is placed on that side (23) of the slab waveguide (15) that is distal relative to the gain medium (3).
Abstract:
A broad area semiconductor laser device includes a waveguide region and a filter region. The waveguide region includes an active region into which current is injected, and a cladding region that sandwiches the active region. The active region either protrudes or is recessed with respect to the filter region, so as to promote the divergence of higher order modes in the filter region.
Abstract:
A semiconductor laser device in an embodiment includes a compound semiconductor layer and a silicon layer. The compound semiconductor layer includes an active layer emitting laser light and has a first mesa structure. The silicon layer is bonded with the compound semiconductor layer. A diffraction grating is provided on a surface of the silicon layer which faces the compound semiconductor layer, and includes a main diffraction grating and two sub-diffraction gratings. The main diffraction grating extends in a longitudinal direction of the first mesa structure; the sub-diffraction gratings are disposed on both sides of the main diffraction grating.
Abstract:
A chip scale ultra violet laser source includes a plurality of laser elements on a substrate each including a back cavity mirror, a tapered gain medium, an outcoupler, a nonlinear crystal coupled to the outcoupler with a front facet that has a first coating that is anti-reflectivity (AR) to a fundamental wavelength of the laser element and high reflectivity (HR) to ultra violet wavelengths, and has an exit facet that has a second coating that has HR to a fundamental wavelength of the laser element and AR to the ultra violet wavelengths, a photodetector coupled to the outcoupler, a phase modulator coupled to the photodetector and coupled to the back cavity mirror, and a master laser diode on the substrate coupled to the phase modulator of each laser element. Each laser element emits an ultra violet beamlet and is frequency and phase locked to the master laser diode.
Abstract:
A laser light source, comprising a semiconductor layer sequence on a substrate and having an active region and a radiation coupling out area having first and second partial regions and a filter structure. The active region generates coherent first electromagnetic radiation and incoherent second electromagnetic radiation, the coherent first electromagnetic radiation is emitted by the first partial region along an emission direction, the incoherent second electromagnetic radiation is emitted by the first partial region and by the second partial region. The filter structure at least partly attenuates the incoherent second electromagnetic radiation emitted by the active region along the emission direction. The filter structure has at least one filter element arranged on an area of the semiconductor layer sequence which has an extension direction parallel to the emission direction and which is remote from the substrate.
Abstract:
The present invention provides a surface emitting laser that provides a sufficient optical output and is suitable as a light source intended for electrophotographic apparatuses, and a surface-emitting-laser array and an image forming apparatus each including the surface emitting laser. The surface emitting laser includes a first stepped structure on a front surface of a front mirror. In the first stepped structure, a difference L between an optical path length in a first area and an optical path length in a second area satisfies the following expression: (¼+N)λ
Abstract translation:本发明提供一种表面发射激光器,其提供足够的光输出并且适合作为用于电子照相设备的光源,以及包括表面发射激光器的表面发射激光器阵列和图像形成装置。 表面发射激光器包括在前反射镜的前表面上的第一阶梯结构。 在第一阶梯结构中,第一区域的光路长度与第二区域的光程长度之间的差值L满足以下表达式:(¼+ N)λ<| L | <(¾+ N)λ其中 N是整数。
Abstract:
The invention relates to a III-V heterostructure laser device (1) arranged in and/or on silicon, comprising:a III-V heterostructure gain medium (3); andan optical rib waveguide (11), arranged facing the gain medium (3) and comprising a slab waveguide (15) equipped with a longitudinal rib (17), the optical rib waveguide (11) being arranged in the silicon.The optical rib waveguide (11) is oriented so that at least one Bragg grating (19, 19a, 19b) is arranged on that side (21) of the slab waveguide (15) which is proximal relative to the gain medium (3) and in that the rib (17) is placed on that side (23) of the slab waveguide (15) that is distal relative to the gain medium (3).
Abstract:
A monolithically integrated, tunable semiconductor laser with an optical waveguide, comprising epitaxial layers on a substrate and having first and second reflectors bounding an optical gain section and a non-driven region, wherein at least one of the reflectors is a distributed Bragg reflector section configured to have a tunable reflection spectrum, wherein control electrodes are provided to at least the optical gain section, and the distributed Bragg reflector section, and wherein the non-driven region has a length of at least 100 μm, is without an electrical contact directly contacting onto the epitaxially grown side of the non-driven region, and the non-driven region is without a reflective Bragg grating within the epitaxial layers of the non-driven region.