摘要:
A method for creating a transmural lesion in tissue includes positioning a distal portion of a catheter near the tissue, where an ultrasound transducer is attached to the distal portion and is operatively coupled to a console and processor. The tissue is imaged by energizing the ultrasound transducer at a first power level to produce an ultrasound beam, where the imaging determines a thickness of the tissue, and a gap distance between the ultrasound transducer and the tissue. The tissue is ablated by energizing the ultrasound transducer at a second power level to produce the ultrasound beam. Energy delivered to the tissue during the ablating is controlled, using the processor, where the processor adjusts a speed of the ultrasound beam moving across the tissue based on the thickness and gap distance, to create the transmural lesion.
摘要:
A system for ablating and mapping tissue comprises a stand alone tissue ablation system adapted to ablate the tissue, and a stand alone cardiac mapping system adapted to map the tissue. The ablation system is operably coupled with the cardiac mapping system such that mapping data from the cardiac mapping system is provided to the ablation system to create a graphical display of the tissue and the ablation system position relative to the tissue. Motion of the ablation system may be monitored and adjusted based on feedback provided by ablation system actuators as well as position sensors.
摘要:
Methods for ablating tissue in a patient having atrial fibrillation comprise advancing an elongate flexible shaft through a patient's vasculature into a chamber of a heart. The elongate flexible shaft has an energy source and a sensor. Tissue in the heart is scanned with the sensor and data about the tissue is captured. The captured data is grouped into one of a plurality of tissue classifications and an anatomical map of the tissue showing the grouped data is displayed. At least a portion of the tissue is ablated so as to form a conduction block that blocks aberrant electrical pathways in the heart. The ablated tissue is grouped into one or more predefined tissue classifications during or prior to the ablation.
摘要:
A cardiac ablation method including the following steps: inserting a treatment catheter into an atrium of a heart, the treatment catheter including an ultrasound emitter; positioning the ultrasound emitter to face heart tissue within the left atrium outside of a pulmonary vein; emitting ultrasound energy from the ultrasound emitter while rotating the ultrasound emitter about a rotation axis; and ablating heart tissue with the ultrasound energy to form a lesion outside of a pulmonary vein.
摘要:
An ablation system for treating atrial fibrillation in a patient comprises an elongate shaft having proximal and distal ends, a lumen therebetween and a housing adjacent the distal end of the elongate shaft. An energy source is coupled to the housing and is adapted to deliver energy to a target tissue so as to create a zone of ablation in the target tissue that blocks abnormal electrical activity thereby reducing or eliminating the atrial fibrillation in the patient. A sensor is adjacent the energy source and adapted to detect relative position of the energy source to the target tissue or characteristics of the target tissue. The system also has a reflecting element operably coupled with the energy source and adapted to redirect energy emitted from the energy source in a desired direction or pattern.
摘要:
An ablation system for treating atrial fibrillation in a patient including an elongate shaft having proximal and distal ends, a lumen therebetween and a housing adjacent the distal end of the elongate shaft. An energy source is coupled to the housing and is adapted to deliver energy to a target tissue so as to create a zone of ablation in the target tissue that blocks abnormal electrical activity thereby reducing or eliminating the atrial fibrillation in the patient. A sensor is adjacent the energy source and adapted to detect relative position of the energy source to the target tissue or characteristics of the target tissue. The system also has a reflecting element operably coupled with the energy source and adapted to redirect energy emitted from the energy source in a desired direction or pattern.
摘要:
A cardiac ablation method including the following steps: inserting a treatment catheter into an atrium of a heart, the treatment catheter including an ultrasound emitter; positioning the ultrasound emitter to face heart tissue within the left atrium outside of a pulmonary vein; emitting ultrasound energy from the ultrasound emitter while rotating the ultrasound emitter about a rotation axis; and ablating heart tissue with the ultrasound energy to form a lesion outside of a pulmonary vein.
摘要:
A method of mapping tissue includes sensing a first region and a second region of a chamber of body tissue. The sensing includes moving an ultrasound transducer of a catheter over a surface of the region along a sensing pattern, and using the ultrasound transducer to gather a set of echo-anatomical data in an amplitude mode at a plurality of points along the sensing pattern. The set of echo-anatomical data comprises distances between the ultrasound transducer and the surface at the plurality of points. A three-dimensional surface map is generated using the set of echo-anatomical data from each region. The surface maps of the regions are combined to form a combined surface map. Methods also include using a set of echo-anatomical data to generate a three-dimensional surface map of a region, from a detected border of the body tissue and detected motion phases of the region.
摘要:
Systems and methods for ablating tissue include an ablation device having an energy source and a sensor. The energy source provides a beam of energy directable to target tissue, and the sensor senses energy reflected back from the target tissue. The sensor collects various information from the target tissue in order to facilitate adjustment of ablation operating parameters, such as changing power or position of the energy beam. Gap distance between the energy source and target tissue, energy beam incident angle, tissue motion, tissue type, lesion depth, etc. are examples of some of the information that may be collected during the ablation process and used to help control ablation of the tissue.