摘要:
Embodiments describe arrangements related to offload scanning of large scan lists. Embodiments may comprise logic such as hardware and/or code to facilitate offloading of the scans of large scan lists, e.g., lists on the order of thousands of networks or access points for networks, to network adapters such as wireless network interface cards. Many embodiments provide a network adapter with a compressed representation of a large scan list that may not fit uncompressed in memory of the network adapter. In some embodiments, the compressed representation of the scan list may be lossy, introducing balances related to the memory size on the network adapter, the extent of compression, and the list size, as well as a balance between the memory size and a probability of false positives. In many embodiments, the network adapter may wake the host device upon identifying a network on a scan list.
摘要:
Embodiments may comprise logic such as hardware and/or code to map content of a device such as a mobile device, a laptop, a desktop, or a server, to a two dimensional field or table and map user poses or movements to the coordinates within the table to offer quick access to the content by a user. Many embodiments, for example, utilize three wireless peripherals such as a watch, ring, and headset connected to a mobile Internet device (MID) comprising an audible user interface and an auditory mapper to access to the content. The audible user interface may communicatively couple with the peripherals to receive pose data that describes the motion or movements associated with one or more of the peripherals and to provide feedback such as audible items and, in some embodiments, other feedback.
摘要:
Embodiments may define traffic priorities to facilitate transmissions for wireless communications devices. Many embodiments comprise MAC sublayer logic to generate and transmit management frames such as beacon frames, association response frames, reassociation response frames, and probe response frames with an access category for low power consumption stations or sensor stations comprising a parameter record defining a contention window that is the earliest contention window to open amongst contention windows defined for the access categories for traffic. In some embodiments, the MAC sublayer logic may store the parameter record sets for access categories in memory, in logic, or in another manner that facilitates transmission of the frames. Some embodiments may receive and detect communications with frames comprising the access categories and store a parameter set for one or more of the access categories in a management information base.
摘要:
Embodiments may provide a way of communicating via an electromagnetic radiator, or light source, that can be amplitude modulated such as light emitting diode (LED) lighting and receivers or detectors that can determine data from light received from the amplitude modulated electromagnetic radiator. Some embodiments may provide a method of transmitting/encoding data via modulated LED lighting and other embodiments may provide receiving/decoding data from the modulated LED lighting by means of a device with a low sampling frequency such as a relatively inexpensive camera (as might be found in a smart phone). Some embodiments are intended for indoor navigation via photogrammetry (i.e., image processing) using self-identifying LED light anchors. In many embodiments, the data signal may be communicated via the light source at amplitude modulating frequencies such that the resulting flicker is not perceivable to the human eye.
摘要:
Generally, embodiments to enable short frames are described herein. Embodiments may comprise logic such as hardware and/or code to reduce the size of a packet by determining a short frame, transmitting the short frame, communicating that the frame is a short frame and interpreting the short frame at the receiving device. Embodiments may determine and transmit and/or receive and interpret short frames.
摘要:
Logic may calculate predicted phase rotations based upon more than one previously determined phase rotation. Logic may access memory to store and retrieve previously determined phase rotations to calculate predicted phase rotations. Logic may determine channel information updates such as channel state information and phase correction information from pilot tones that do not travel close to the direct current (DC) tone or the band edge (or guard) tones and replace the missing phase rotations with predicted phase rotations. Logic may skip phase tracking from pilot tones that have traveled close to the DC tone or the edge tones or that experience channel fading, which may result in a predicted phase rotation being more accurate than a phase rotation determined by processing the corresponding pilot tone.
摘要:
Logic to reduce the probability of hashing collisions via a single hash function. Logic may hash the service set identification (SSID) to generate a compressed SSID and determine multiple compressed SSID segments based upon the compressed SSID. Logic may generate multiple SSID segments by hashing modified versions of the SSID or modifying hashed versions of the SSID. And logic may identify the compressed SSID segment with an index number. Logic may receive one or more compressed SSID segments, determine an index number associated with the segment(s) and compare the received SSID segment against a compressed SSID segment of an SSID that is sought. Logic may generate the multiple compressed SSID segments, store the segments in memory, and compare the compressed SSID segment received in a beacon with a corresponding compressed SSID segment in the memory.
摘要:
Logic may determine channel information updates such as channel state information and phase correction information from pilot tones that do not travel close to the DC tone or the band edge tones. Logic may skip channel updates and phase tracking from pilot tones that have traveled close to the DC tone or the edge tones. Logic may use channel estimates and phase rotations that are obtained from previous locations of the pilot tones instead of pilot tones that are adjacent to the DC tone or the edge tones. Logic may access memory to store the channel information such as the phase correction information previously obtained and the channel state information previously obtained and derived from processing pilot tones at locations adjacent to the symbol indices next to the DC tone and the edge tones.
摘要:
Apparatuses, methods, and media for page coloring with color inheritance for memory pages are disclosed. Some embodiments may include an interface to access a memory and a paging unit including translation logic, inheritance logic, and comparison logic. The translation logic translates a first address to a second address based on an entry in a data structure, wherein the first address is provided by an instruction stored in a first page in the memory and the entry includes a base address of a second page in the memory including the second address and a color of the second page. The inheritance logic may determine an effective current page color of the first page based on a color of the first page. The comparison logic may compare the effective current page color of the first page to the color of the second page. Other embodiments are disclosed and claimed.
摘要:
Generally speaking, methods and apparatuses which correct errors related to phase and gain imbalances in quadrature tuners are disclosed. The quadrature tuner may be online and operating, receiving data. An embodiment may generate a squared signal from the IF frequency signal of the tuner. In generating the squared signal, the embodiment may enable the extraction of phase error and gain error information of the IF signal. The embodiment may determine a phase error component, a gain error component, or both, by frequency translation. The frequency translation may involve down-converting the signal associated with the error component to direct current (DC) signals and enable the determination of the associated phase error and/or gain error. The embodiments may generate an adjusted signal via the IF signal by applying a phase correction signal or gain correction signal to components used to correct the IF signal.