Abstract:
The present invention relates to a control method for an electromagnetic contactor and an electromagnetic contactor implementing such a method, where the method includes supplying an electromagnet of the contactor with a pulse width modulation supply signal and having a nominal frequency, the method also including varying the period over at least part of the pulses of the modulation so as to reduce the conducted electromagnetic disruptions, the variation of the period being chosen such that the frequency of the supply signal remains comprised in a given frequency band including the nominal frequency.
Abstract:
A device for protecting an electrical installation including an insulating body electrically defining an internal housing, the protective device including, within the internal housing: an active component of a device for protecting an electrical installation; a disconnection system for disconnecting the active component moveable between a contact position corresponding to a connected state of the active component and an open position corresponding to a disconnected state of the active component; a disconnection indicator, where the disconnection indicator is secured in movement to the disconnection system and the disconnection indicator and the insulating body are arranged to have a first configuration, which corresponds to the contact position, and a second configuration, which corresponds to the open position, the relative positioning of the disconnection indicator with respect to the insulating body in the first configuration being visually distinct from the outside of the insulating body from the relative positioning of the disconnection indicator with respect to the insulating body in the second configuration.
Abstract:
A protection device cartridge of an electrical installation intended to be brought on a base including an active protection component having a first terminal and a second terminal; a first connector forming a first electrical circuit portion electrically connected to the first terminal and to a first bearing portion of the base and a second connector forming a second electrical circuit portion electrically connected to the second terminal and to a second bearing portion of the base, the first connector and the second connector being arranged to allow the connection of the cartridge on the base according to an insertion direction, the first bearing portion and the second portion presenting a spacing determined according to the direction transverse to the insertion direction, where the second bearing portion is disposed between a first end point of the first electric circuit portion and the first bearing portion according to the direction transverse to the insertion direction and where the first bearing portion is disposed between the second bearing portion and a second end point of the second electrical circuit portion according to the direction transverse to the insertion direction, the first end point and the second end point presenting a determined spacing, greater than the spacing between the first bearing portion and the second bearing portion.
Abstract:
The present invention relates to a cut-off member intended to be electrically series-connected to an electric circuit comprising a device for protecting an electric installation against lightning, the cut-off member (1) comprising: a first conducting armature (7) electrically connected to a first coupling terminal (3) to the electric circuit and a second conducting armature (9) electrically connected to a second coupling terminal (5) for coupling to the electric circuit; at least one fuse element (11) disposed between the first conducting armature (7) and the second conducting armature (9) and electrically connected to the first conducting armature (7) and to the second conducting armature (9), the at least one fuse element (11) being arranged to melt when it is crossed by a current of a threshold intensity over a threshold period of time; a device for increasing a peak arc voltage (15) between the first conducting armature (7) and the second conducting armature (9) in the case of melting of the at least one fuse element (11).
Abstract:
A device for protecting an electrical installation including an insulating body electrically defining an internal housing, the protective device including, within the internal housing: an active component of a device for protecting an electrical installation; a disconnection system for disconnecting the active component moveable between a contact position corresponding to a connected state of the active component and an open position corresponding to a disconnected state of the active component; a disconnection indicator, where the disconnection indicator is secured in movement to the disconnection system and the disconnection indicator and the insulating body are arranged to have a first configuration, which corresponds to the contact position, and a second configuration, which corresponds to the open position, the relative positioning of the disconnection indicator with respect to the insulating body in the first configuration being visually distinct from the outside of the insulating body from the relative positioning of the disconnection indicator with respect to the insulating body in the second configuration.
Abstract:
A terminal block including at least one housing for a connection terminal, the housing extending at least partly within a volume delimited by: a first plane transverse to two side planes delimiting the insulating body, substantially parallel to a general direction joining a first end and a second end of a fastening member, and passing through a connecting area of the fastening member, and a second plane transverse to the two side planes delimiting the insulating body, substantially parallel to the first plane and passing through a connecting area of the rear face, at least a third plane transverse to the two side planes delimiting the insulating body, substantially transverse to the first plane and to the second plane, and passing through the furthest elastic branch of the fastening means intended to interact with an edge of the support rail, and at least a fourth plane transverse to the two side planes delimiting the insulating body substantially transverse to the first plane and to the second plane, and passing through a retaining member intended to lock a tool.
Abstract:
A protection device cartridge of an electrical installation intended to be brought on a base including an active protection component having a first terminal and a second terminal; a first connector forming a first electrical circuit portion electrically connected to the first terminal and to a first bearing portion of the base and a second connector forming a second electrical circuit portion electrically connected to the second terminal and to a second bearing portion of the base, the first connector and the second connector being arranged to allow the connection of the cartridge on the base according to an insertion direction, the first bearing portion and the second portion presenting a spacing determined according to the direction transverse to the insertion direction, where the second bearing portion is disposed between a first end point of the first electric circuit portion and the first bearing portion according to the direction transverse to the insertion direction and where the first bearing portion is disposed between the second bearing portion and a second end point of the second electrical circuit portion according to the direction transverse to the insertion direction, the first end point and the second end point presenting a determined spacing, greater than the spacing between the first bearing portion and the second bearing portion.
Abstract:
The method comprising displacing the formed electric arc towards an electrode located in an intermediate position between both main electrodes; a separating the formed electric arc into two secondary electric arcs, a semiconductor switch, normally open, connecting the intermediate electrode to one of the main electrodes; closing the semiconductor switch in order to extinguish the secondary electric arc between both electrodes connected by the semiconductor switch; opening the semiconductor switch in order to extinguish the other secondary electric arc. The disclosure further relates to a protection method and a protection device, notably a protection device specially designed for applying the method.
Abstract:
The present invention relates to a control method for an electromagnetic contactor and an electromagnetic contactor implementing such a method, where the method includes supplying an electromagnet of the contactor with a pulse width modulation supply signal and having a nominal frequency, the method also including varying the period over at least part of the pulses of the modulation so as to reduce the conducted electromagnetic disruptions, the variation of the period being chosen such that the frequency of the supply signal remains comprised in a given frequency band including the nominal frequency.
Abstract:
A device of protection against transient electrical overvoltages, including two voltage-limiting passive components, disconnectors sensitive to the state of these components and adapted to individually disconnect each end of life component therefrom, the components are joined in parallel between a first and a second terminal of the device, where the reference voltage of the first component is inferior to the reference voltage of the second component.