Abstract:
A method of removing fog from the images/videos independent of the density or amount of the fog and free of user intervention and a system for carrying out such method of fog removal from images/videos are disclosed. The removal of fog from images and video involve airlight estimation and airlight map refinement based restoration of foggy images and videos. Advantageously, removal of fog from images and videos of this invention would require less execution time and yet achieve high perceptual image quality with reduced noise and enhanced contrast. The proposed method is adapted for RGB Color model and advantageously also for HSI color model involving reduced computational requirements and be user friendly and supposed to have wide application and use.
Abstract:
The invention relates to a new method and system for detection and removal of rain from video using temporal/spatiotemporal properties. Advantageously, the temporal/spatiotemporal properties are involved to separate the rain pixels from the non-rain pixels. It is thus possible by way of the present invention to involve less number of consecutive frames, reducing the buffer size and delay. It works only on the intensity plane which reduces the complexity and execution time significantly along with accurate rain detection. This new technique does not assume the shape, size and velocity of the raindrops which makes it robust to different rain conditions. This method reduces the buffer size which reduces the system cost, delay and power consumption while maintaining sufficient quality of rain detection.
Abstract:
A method of removing fog from the images/videos independent of the density or amount of the fog and free of user intervention and a system for carrying out such method of fog removal from images/videos are disclosed. The removal of fog from images and video involve airlight estimation and airlight map refinement based restoration of foggy images and videos. Advantageously, removal of fog from images and videos of this invention would require less execution time and yet achieve high perceptual image quality with reduced noise and enhanced contrast. The proposed method is adapted for RGB Colour model and advantageously also for HSI colour model involving reduced computational requirements and be user friendly and supposed to have wide application and use.
Abstract:
The invention relates to a new method and system for detection and removal of rain from video using temporal/spatiotemporal properties. Advantageously, the temporal/spatiotemporal properties are involved to separate the rain pixels from the non-rain pixels. It is thus possible by way of the present invention to involve less number of consecutive frames, reducing the buffer size and delay. It works only on the intensity plane which reduces the complexity and execution time significantly along with accurate rain detection. This new technique does not assume the shape, size and velocity of the raindrops which makes it robust to different rain conditions. This method reduces the buffer size which reduces the system cost, delay and power consumption while maintaining sufficient quality of rain detection.