Abstract:
The present invention provides a method of treating a cell proliferative disease such as cancer by providing to a subject in need thereof an immunogenic composition comprising plasmid and peptide(s) or analogues thereof. In embodiments of the present invention there is provided methods and compositions for inducing, entraining, and/or amplifying the immune response to MHC class-I restricted epitopes of carcinoma antigens to generate an effective anti-cancer immune response.
Abstract:
The present invention provides a method of treating cancer by providing to a subject in need thereof an immunogenic composition comprising a nucleic acid construct encoding a polypeptide comprising CTL epitopes PSMA288-297 and PRAME425-433, or a cross-reactive analogue. In embodiments of the present invention there is provided methods and compositions for inducing, entraining, and/or amplifying the immune response to MHC class-I restricted epitopes of carcinoma antigens to generate an effective anti-cancer immune response.
Abstract:
Embodiments of the present invention relate to multicistronic vectors and methods for their design. Methods and compositions of the invention include a vector including at least two cistrons, wherein a first cistron includes a first promoter and a first nucleic acid sequence encoding one or more therapeutic agents, and wherein a second cistron comprises a second promoter and a second nucleic acid sequence encoding one or more RNA molecules that interfere with the expression of a biological response modifier or the therapeutic agent, wherein the expression of the first sequence is under control of the first promoter and expression of the second sequence is under control of the second promoter.
Abstract:
Embodiments of the invention disclosed herein relate to methods and compositions for bypassing the involvement of CD4+ cells when generating antibody and MHC class I-restricted immune responses, controlling the nature and magnitude of the response, and promoting effective immunologic intervention in viral pathogenesis. More specifically, embodiments relate to immunogenic compositions for vaccination particularly therapeutic vaccination, against HIV and other microbial pathogens that impact functioning of the immune system, their nature, and the order, timing, and route of administration by which they are effectively used.
Abstract:
The present invention provides a method of treating cancer by providing to a subject in need thereof an immunogenic composition comprising a nucleic acid construct encoding a polypeptide comprising CTL epitopes PSMA288-297 and PRAME425-433, or a cross-reactive analogue. In embodiments of the present invention there is provided methods and compositions for inducing, entraining, and/or amplifying the immune response to MHC class-I restricted epitopes of carcinoma antigens to generate an effective anti-cancer immune response.
Abstract:
Disclosed herein are methods and compositions for inducing an immune response against various combinations of tumor-associated antigens, which can promote effective immunologic intervention in pathogenic processes. Embodiments of the invention disclosed herein are directed to the use of effective combinations of TuAAs for the immunotherapy of patients with various types of cancer. Both immunogenic compositions for inducing an immune response to these combinations of antigens and methods for their use are disclosed.
Abstract:
Embodiments of the invention disclosed herein relate to methods and compositions for bypassing the involvement of CD4+ cells when generating antibody and MHC class I-restricted immune responses, controlling the nature and magnitude of the response, and promoting effective immunologic intervention in viral pathogenesis. More specifically, embodiments relate to immunogenic compositions for vaccination particularly therapeutic vaccination, against HIV and other microbial pathogens that impact functioning of the immune system, their nature, and the order, timing, and route of administration by which they are effectively used.
Abstract:
Some embodiments relate to analogs of peptides corresponding to class I MHC-restricted T cell epitopes and methods for their generation. These analogs can contain amino acid substitutions at residues that directly interact with MHC molecules, and can confer improved, modified or useful immunologic properties. Additionally, classes of analogs, in which the various substitutions comprise the non-standard residues norleucine and/or norvaline, are disclosed.
Abstract:
Embodiments of the present invention relate to multicistronic vectors and methods for their design. Methods and compositions of the invention include a vector including at least two cistrons, wherein a first cistron includes a first promoter and a first nucleic acid sequence encoding one or more therapeutic agents, and wherein a second cistron comprises a second promoter and a second nucleic acid sequence encoding one or more RNA molecules that interfere with the expression of a biological response modifier or the therapeutic agent, wherein the expression of the first sequence is under control of the first promoter and expression of the second sequence is under control of the second promoter.
Abstract:
The present invention provides a method of treating cancer by providing to a subject in need thereof an immunogenic composition comprising a nucleic acid construct encoding a polypeptide comprising CTL epitopes PSMA288-297 and PRAME425-433, or a cross-reactive analogue. In embodiments of the present invention there is provided methods and compositions for inducing, entraining, and/or amplifying the immune response to MHC class-I restricted epitopes of carcinoma antigens to generate an effective anti-cancer immune response.