Abstract:
Apparatus and methods are disclosed for power optimization in a wireless device. The apparatus and methods effect monitoring the amount of data stored in a data buffer that buffers data input to and data output from a processor. Dependent on the amount of data stored in the buffers parameters of a control function, such as a Dynamic Clock and Voltage Scaling (DCVS) function are modified based on the amount of data stored in the data buffer. By modifying or pre-empting the parameters of the control function, which controls at least processor frequency, the processor can process applications more dynamically over default parameter settings, especially in situations where one or more real-time activities having strict time constraints for completion are being handled by the processor as evinced by increased buffer depth. As a result, power usage is further optimized as the control function is more responsive to processing conditions.
Abstract:
A method and apparatus for enabling a data call in a wireless network comprising determining if the data call in a packet app is a relay model tethered data call; and determining if default link flow type Flow 1 is deactivated for the data call. In one aspect, one or more of the following is also included: determining if the type of the data call is CDMA 2000 1X, IS-95A/B, EVDO Rev. 0, EVDO Rev. A or EVDO Rev. B; determining the type of the packet app; requesting to deactivate default link flow type Flow 1; and determining if default link flow type Flow 1 is deactivated for the data call; and wherein the type of the packet app is of a default packet app (DPA), a multi-flow packet app (MPA), an enhanced multi-flow packet app (EMPA) or a multi-link multi-flow packet app (MMPA).
Abstract:
A method for inter-modem coordination is described. A first data connection to a network in a first network coverage area using a first air interface provided by a first modem is established. The method also includes detecting a second network coverage area with a second air interface provided by a second modem. A data call state of the second modem is determined by the first modem. The first data connection to the network by the first modem is terminated when the data call state of the second modem is no data call. A data call state of the first modem is determined by the second modem. A second data connection to the network using the second air interface provided by the second modem is initiated when the data call state of the first modem is no data call.
Abstract:
Techniques for managing resources on a wireless device are described. In an aspect, congestion of resources on the wireless device may be detected. If any resources are deemed to be congested, then congestion of the congested resources may be relieved by controlling utilization of the congested resources by at least one client. In one design, flow control may be performed for at least one data flow to relieve congestion of the congested resources. A pattern indicative of when to send messages enabling data transmission and when to send messages disabling data transmission may be selected. Messages may then be sent in accordance with the pattern to control transmission of data for the at least one data flow. Another pattern with a higher ON fraction or a lower ON fraction may be selected based on usage of the congested resources.
Abstract:
Certain aspects of the present disclosure provide techniques for wireless communications, wherein distinct port partitions are assigned to processing entities on a user equipment device. Doing so provides the processing entities with concurrent access to the single PDN connection.
Abstract:
A method for inter-modem coordination is described. A first data connection to a network in a first network coverage area using a first air interface provided by a first modem is established. The method also includes detecting a second network coverage area with a second air interface provided by a second modem. A data call state of the second modem is determined by the first modem. The first data connection to the network by the first modem is terminated when the data call state of the second modem is no data call. A data call state of the first modem is determined by the second modem. A second data connection to the network using the second air interface provided by the second modem is initiated when the data call state of the first modem is no data call.
Abstract:
A method for maintaining IP context during an inter RAT handover of a UE between an eHRPD network and an LTE network may include delaying a transfer of an Internet Protocol context for at least one active packet data network until an IP address for an attach (PDN) Packet Data Network has been assigned and in the case where the Internet Protocol address for the Attach Packet Data Network is not assigned, initiating a detach operation from the LTE network without the user equipment losing the Internet Protocol context of the at least one active Packet Data Network.
Abstract:
Systems, methods and apparatus for quality of service (QoS) flows in a communication system are provided. In one aspect a method is providing for establishing a QoS flow for an application in a user equipment device. The method includes receiving QoS information from one of an application and a network. The method further includes establishing a QoS communication flow for the application based on the received information. The method also includes receiving QoS information from the other of the application and the network and modifying the established QoS communication flow based on the additional information.
Abstract:
More seamless handoff between access networks is achieved by saving session information for each access network upon being handed off from the access network and invoking the saved session information upon being handed back to the access network. An access terminal establishes a first session with a first access network, which may entail performing QoS negotiation with the first access network and setting up packet filters at a packet data gateway. The access terminal exchanges data with the first access network in accordance with the configuration of the first session. The access terminal saves the first session configuration after being handed off to a second access network, establishes a second session with the second access network, and exchanges data with the second access network in accordance with the configuration of the second session. The access terminal uses the saved first session configuration upon being handed back to the first access network.
Abstract:
A wireless communications device is configured to establish a radio level session with a network at a relatively high or highest protocol level among a plurality of protocol levels supported. Upon failures in establishing, or during, a network level data session, the radio level session is closed. Thereafter, the device re-attempts to establish the network level session at a lower, fallback protocol level, by pretending it is a legacy device incapable of supporting the high protocol level. In this manner, the network is likely to follow a different procedure in establishing data communications, whereby an error that caused the failure is less likely to be repeated. As examples, error conditions in eHRPD data sessions result in fallback to HRPD or 1xRTT data sessions. A network based alternative embodiment implements protocol fallback via appropriate fallback instructions to the wireless device.