Abstract:
An amplification-type solid-state imaging device supplies a voltage of VRESL1 to a gate of a reset transistor when a signal of a vertical output line is read out and supplies a voltage of VRESL2, which is greater than VRESL1, when the signal charge accumulated in a photodiode is transferred to an FD so that, via a capacitor provided between the gate of the reset transistor and the FD, good linearity is obtained by decreasing the voltage of the FD when the signal is read out and the maximum amount of charge which can be transferred is increased by increasing the voltage of the FD when the charge is transferred.
Abstract:
An output level difference in the case of using a joint line as a boundary, a bright line, a black bar, or the like is suppressed. A solid-state image pick-up apparatus in which, on a substrate having a plurality of photoelectric converting areas (photodiodes), a solid-state image pick-up element provided with at least one pattern layer formed by divisional exposure and a lens for introducing light into the plurality of photoelectric converting areas of the solid-state image pick-up element are formed. By setting a center of an optical axis of the lens to an approximate joint position between the pattern layers where the pattern layers have been joined by the divisional exposure, the output level difference of a pixel output of the solid-state image pick-up element on the right and left sides of the joint position is suppressed.
Abstract:
A solid-state imaging apparatus according to the present invention is characterized in that a reset gate voltage VresH to be applied to a gate of a reset MOS transistor is lower than a power supply voltage SVDD of a power supply to which drains of an amplifying MOS transistor and the reset MOS transistor are connected.
Abstract:
An image sensing apparatus having a pixel array with a plurality of pixels, comprises an amplification unit, wherein the amplification unit amplifies a difference-voltage between a voltage level input corresponding to signals output from the pixel array and a reference voltage level, outputs a non-inverted output signal to a first output signal line, and outputs an inverted output signal to a second output signal line and a switch short-circuiting the first output signal line and the second output signal line in response to a reset signal.
Abstract:
At least one exemplary embodiment is directed to a solid state image sensor including at least one antireflective layer and/or non rectangular shaped wiring layer cross section to reduce dark currents and 1/f noise.
Abstract:
It is a principle object of the present invention to reduce a voltage drop of a common power supply wiring in a plurality of amplification circuits to suppress crosstalk generated in other signal output lines. A photoelectric conversion device includes: a plurality of pixels each having a photoelectric conversion area; a plurality of signal output lines through which electrical signals are to be read out from the plurality of pixels; and a plurality of amplification circuits provided in correspondence to the plurality of signal output lines for amplifying the electrical signals, respectively, the plurality of amplification circuits including at least one constant current circuit portion and being disposed in a predetermined direction of repetitive dispersion, in which a constant current circuit portion includes at least a source grounded field effect transistor (the gate electrode is designated by reference symbol 124G), and a direction (X-axis direction) of a channel length of the source grounded field effect transistor is different from the direction of repetitive disposition of the amplification circuits.
Abstract:
An object of the invention is to cause a part of charge spilling from a photoelectric conversion unit to flow into a charge holding unit and thereby extend dynamic range and at the same time improve image quality. There is provided a solid-state image pickup device having a pixel including: a photoelectric conversion unit generating and accumulating charge by means of photoelectric conversion; a first charge holding unit being shielded from light, and being adaptable to accumulate a part of charge spilling from the photoelectric conversion unit in a period during which the photoelectric conversion unit generates and accumulates charge; an amplifying unit (SF-MOS) amplifying charge; a first transfer unit (Tx-MOS) transferring the charge accumulated in the photoelectric conversion unit to the amplifying unit; and a second transfer unit (Ty-MOS) transferring the charge accumulated in the first charge holding unit to the amplifying unit.
Abstract:
An image sensing apparatus comprises a pixel and a driving unit, wherein the driving unit includes a buffer circuit including a first PMOS transistor and a first NMOS transistor, and letting V3 be a voltage supplied to a gate of the first NMOS transistor to supply a transfer signal for turning off the transfer MOS transistor to the transfer control line, V4 be a voltage supplied to a gate of the first PMOS transistor to supply a transfer signal for turning on the transfer MOS transistor to the transfer control line, Vthp1 be a threshold voltage of the first PMOS transistor, and Vthn1 be a threshold voltage of the first NMOS transistor, (V2+Vthn1)
Abstract:
A solid state image pickup device which can prevent color mixture by using a layout of a capacitor region provided separately from a floating diffusion region and a camera using such a device are provided. A photodiode region is a rectangular region including a photodiode. A capacitor region includes a carrier holding unit and is arranged on one side of the rectangle of the photodiode region as a region having a side longer than the one side. In a MOS unit region, an output unit region including an output unit having a side longer than the other side which crosses the one side of the rectangle of the photodiode region is arranged on the other side. A gate region and the FD region are arranged between the photodiode region and the capacitor region.
Abstract:
It is a principle object of the present invention to reduce a voltage drop of a common power supply wiring in a plurality of amplification circuits to suppress crosstalk generated in other signal output lines. A photoelectric conversion device includes: a plurality of pixels each having a photoelectric conversion area; a plurality of signal output lines through which electrical signals are to be read out from the plurality of pixels; and a plurality of amplification circuits provided in correspondence to the plurality of signal output lines for amplifying the electrical signals, respectively, the plurality of amplification circuits including at least one constant current circuit portion and being disposed in a predetermined direction of repetitive dispersion, in which a constant current circuit portion includes at least a source grounded field effect transistor (the gate electrode is designated by reference symbol 124G), and a direction (X-axis direction) of a channel length of the source grounded field effect transistor is different from the direction of repetitive disposition of the amplification circuits.