Abstract:
There is provided an image pickup apparatus comprising a plurality of pixels each including a photoelectric conversion unit which converts incident light into an electrical signal and accumulates the electrical signal, an amplifier transistor which amplifies and outputs the signal from the photoelectric conversion unit, a transfer transistor which transfers the electrical signal accumulated in the photoelectric conversion unit to the amplifier transistor, and a processing transistor which performs predetermined processing, and a control circuit which sets the signal level supplied to the control electrode of the transfer transistor in order to turn off the transfer transistor to be lower than the signal level supplied to the control electrode of the processing transistor in order to turn off the processing transistor.
Abstract:
An image pickup device includes pixels, each including a photoelectric conversion unit and a transfer unit. The photoelectric conversion unit includes a first-conductivity-type first semiconductor region and a second-conductivity-type second semiconductor region. A second-conductivity-type third semiconductor region is formed on at least a part of a gap between a photoelectric conversion unit of a first pixel and a photoelectric conversion unit of a second pixel adjacent to the first pixel. A first-conductivity-type fourth semiconductor region having an impurity concentration higher than an impurity concentration of the first semiconductor region is formed between the photoelectric conversion unit and the third semiconductor region. A first-conductivity-type fifth semiconductor region having an impurity concentration higher than the first semiconductor region is arranged between the photoelectric conversion unit and the third semiconductor region and is arranged deeper than fourth semiconductor region.
Abstract:
Provided is a solid-state imaging apparatus that is capable of preventing a harmful influence due to noise generated in a control line. The solid-state imaging apparatus includes: a plurality of pixels each including a photoelectric conversion unit for photoelectric converting to generate a signal; control lines for supplying control signals for driving the pixels; driving buffers for driving the control lines; and switching units for switching between a first path for supplying power source voltages from power source circuits to power source terminals of the driving buffers and a second path for supplying power source voltages from capacitors to the power source terminals of the driving buffers.
Abstract:
An solid state image pickup device including a plurality of photoelectric conversion regions (PD1, PD2) for generating carriers by photoelectric conversions to accumulate the generated carriers, an amplifying unit for amplifying the carriers, being commonly provided to at least two photoelectric conversion regions, a first and a second transfer units (Tx-MOS1, Tx-MOS2) for transferring the carriers accumulated in the first and the second photoelectric conversion regions, respectively, a first and a second carrier accumulating units (Cs1, Cs2) for accumulating the carriers flowing out from the first and the second photoelectric conversion regions through a first and a second fixed potential barriers, respectively, and a third and a fourth transfer units (Cs-MOS1, Cs-MOS2) for transferring the carriers accumulated in the first and the second carrier accumulating units to the amplifying unit, respectively.
Abstract:
A solid-state imaging apparatus, an imaging system and a driving method for the solid-state imaging apparatus that can reduce jaggy while increasing speed of operation for reading out signals are provided. The driving method includes a first step of storing one or more signals from the plurality of pixels in each of the plurality of first holding units; a second step of adding the signals from the plurality of pixels stored in the plurality of first holding units; and a third step of outputting the signal stored in the second holding unit, such that at least a part of a period of the first step is overlapped with a period of the third step.
Abstract:
A solid state image pickup device which can prevent color mixture by using a layout of a capacitor region provided separately from a floating diffusion region and a camera using such a device are provided. A photodiode region is a rectangular region including a photodiode. A capacitor region includes a carrier holding unit and is arranged on one side of the rectangle of the photodiode region as a region having a side longer than the one side. In a MOS unit region, an output unit region including an output unit having a side longer than the other side which crosses the one side of the rectangle of the photodiode region is arranged on the other side. A gate region and the FD region are arranged between the photodiode region and the capacitor region.
Abstract:
The present invention uses an image pickup device comprising a plurality of pixels respectively including a photoelectric conversion unit for converting incoming light into a signal charge, an amplifying unit for amplifying the signal charge generated by the photoelectric conversion unit and a transfer unit for transferring the signal charge from the photoelectric conversion unit to the amplifying unit, in which the photoelectric conversion unit is formed of a first-conductivity-type first semiconductor region and a second-conductivity-type second semiconductor region and a second-conductivity-type third semiconductor region is formed on at least a part of the gap between a photoelectric conversion unit of a first pixel and a photoelectric conversion unit of a second pixel adjacent to the first pixel, a first-conductivity-type fourth semiconductor region having an impurity concentration higher than that of the first semiconductor region is formed between the photoelectric conversion unit and the third semiconductor region and a first-conductivity-type fifth semiconductor region formed at a position deeper than the fourth semiconductor region and having an impurity concentration higher than that of the first semiconductor region is included between the photoelectric conversion unit and the third semiconductor region.
Abstract:
An image sensing apparatus comprises a transfer block including a first transfer unit and a second transfer unit, wherein the first transfer unit includes a first impedance converter which transfers a first signal to the output unit, and the first transfer unit transfers, as a third signal, a difference signal between a first offset of the first impedance converter and a signal obtained by superimposing the first offset on the first signal, the second transfer unit includes a second impedance converter which transfers a second signal to the output unit, and the second transfer unit transfers, as a fourth signal, a difference signal between a second offset of the second impedance converter and a signal obtained by superimposing the second offset on the second signal, and the output unit calculates a difference between the third signal and the fourth signal, generating and outputting an image signal.
Abstract:
An image sensing device comprises a readout unit, an output amplifier, and a horizontal scanning unit, wherein the horizontal scanning unit scans a plurality of column signal holding circuits in a plurality of holding blocks in the readout unit in a direction along a row, in each holding block, a first operation in which the signal held in a first holding unit is transferred to a second holding unit via a transfer switch is performed, and subsequently, a second operation in which the signal held in the second holding unit is transferred to the output amplifier, and a third operation in which a signal output from a pixel is read out to the first holding unit are performed in parallel, and the second operation and the first operation are performed in parallel between different holding blocks in the plurality of holding blocks.
Abstract:
An solid state image pickup device including a plurality of photoelectric conversion regions (PD1, PD2) for generating carriers by photoelectric conversions to accumulate the generated carriers, an amplifying unit for amplifying the carriers, being commonly provided to at least two photoelectric conversion regions, a first and a second transfer units (Tx-MOS1, Tx-MOS2) for transferring the carriers accumulated in the first and the second photoelectric conversion regions, respectively, a first and a second carrier accumulating units (Cs1, Cs2) for accumulating the carriers flowing out from the first and the second photoelectric conversion regions through a first and a second fixed potential barriers, respectively, and a third and a fourth transfer units (Cs-MOS1, Cs-MOS2) for transferring the carriers accumulated in the first and the second carrier accumulating units to the amplifying unit, respectively.