Abstract:
A light beam scanning optical apparatus which writes two lines at one scan on a photosensitive member with light beams emitted from two light sources. A light source unit of the apparatus has a first movable retainer block which retains a first laser diode and a second movable retainer block which retains a second laser diode. The second movable retainer block becomes adjustable two-dimensionally on a base block by loosening screws which fit the second movable retainer block to the base block.
Abstract:
A laser beam optical scanning system having a laser diode, a collimator lens, a cylindrical lens, a polygonal mirror and an f.theta. mirror. The f.theta. mirror has a free toric surface whose curvature in the main scanning direction varies in accordance with field angle. The variation of the curvature of the free toric surface is set in accordance with the position of the f.theta. mirror in the optical path, and this appropriate setting of the variation of the curvature enables the f.theta. mirror to correct both distortion and curvature of field in the main scanning direction.
Abstract:
A laser source unit in which a laser diode is located at a focal point of a Fresnel lens using refraction and diffraction. The laser diode emits a laser beam in accordance with a control signal generated by a driving circuit. The laser diode is driven such that defocus on an image surface caused by a rise in the temperature of the laser diode can be kept in a tolerable degree.
Abstract:
An optical scanning device having a first optical beam source for exciting a first optical beam to be modulated based on an image signal, a beam scanning device having a reflecting face for scanning the first optical beam on a photosensitive face, a second optical beam source for exciting a second optical beam for generating a modulation start signal for the first optical beam and a light receiving element for receiving the second optical beam having been reflected by the beam scanning device. The second optical beam source is arranged so as to prevent its reflected optical beam when scanned by the beam scanning device from being directed toward the photosensitive face. Having detected the second optical beam, the light receiving element generates a signal for starting the modulation of the first optical beam.
Abstract:
An image forming apparatus for forming in series a plurality of images on a photosensitive film of the long roll type having a film transporting mechanism using a stepping motor, a microstep driver for controllably driving the stepping motor in a plurality of microsteps constituting one step unit of the stepping motor and an imaging device for forming an image on the film being transported by the film transporting mechanism. According to this image forming apparatus, variations in the film transport start positions resulting from the microstep-wise drive are avoided either by the film transporting mechanism arranged such that a pitch between adjacent images to be formed in series on the film is a multiple of an integer of a film transport distance covered by the single step unit of the stepping motor, or by an initial control device for re-setting the stepping motor to a stop position thereof assumed at completion of a previous imaging operation before re-energizing the stepping motor for a next imaging operation.
Abstract:
A scanning optical apparatus for a printer and a digital copying machine has a light source, a deflector, first and second imaging units. The deflector deflects a light beam emitted from the light source to a main scanning direction. The first imaging unit makes the light beam emitted from the light source form an image in the vicinity of the deflection position of said deflector in the sub-scanning direction. The first imaging unit has a first resin lens having a negative refractive power only in a sub-scanning direction. The second imaging unit makes the light beam deflected by the deflector form an image on a scanned surface in the sub-scanning direction. The second imaging unit has a second resin lens having a positive refractive power only in the sub-scanning direction.
Abstract:
A laser beam optical scanning device which has a laser diode, a collimator lens, a cylindrical lens, a polygonal scanner and an f .theta. lens. The polygonal scanner is made of resin, and when the polygonal scanner is driven to rotate, the reflective facets of the polygonal scanner are distorted to be concave or convex because of a centrifugal force. If the reflective facets are distorted to be concave with rotation of the polygonal scanner, the image surface shifts along the optical axis toward the polygonal scanner. Therefore, in this case, the elements of the optical scanning device are positioned such that the image surface is located behind a light receiving surface while the polygonal scanner is stationary and is located nearer to the light receiving surface while the polygonal scanner is rotating.
Abstract:
An image recording apparatus wherein a laser diode which is disposed on a focal point of a micro Fresnel lens emits a laser beam and the laser beam is collimated by the Fresnel lens and scanned on a photosensitive drum by a polygonal mirror and an f.theta. optical system. A change in temperature of the laser diode does not result in such serious defocus as to cause practical problems.
Abstract:
Disclosed is a recording apparatus having a semiconductor laser producing a laser beam with Gauss distribution and an aperture stop. The aperture stop has a diameter in the direction normal to a junction plane of the semiconductor laser which is adjustable to a suitable value and a diameter in the direction parallel to the junction plane is fixed at a predetermined value. This aperture stop transmits the beam in regulated form with minimum loss of energy propagation efficiency.
Abstract:
A scanning optical apparatus has a convex cylindrical lens and a concave cylindrical lens between a light source for emitting a light beam and a polygon mirror. The cylindrical lenses condense the light beam in the vicinity of a deflecting surface of the polygon mirror only in the sub-scanning direction. The cylindrical lenses are held by a lens barrel to form one unit, and the lens barrel is mounted on a V groove formed in a base. The position of the unit having the cylindrical lenses is adjustable along the optical axis, and the rotational angle of the unit is adjustable about the optical axis.