Abstract:
A method is described for generating an item of information for indicating an airborne state for a vehicle. The method has a step of receiving a rotational speed signal which represents a rotational speed of at least one drive wheel of the vehicle. The method also has a step of generating the information for indicating an airborne state based on a comparison of a profile of the rotational speed signal with at least one reference profile for the rotational speed signal.
Abstract:
A method for determining a type of an impact of an object on a vehicle includes: reading in an acceleration value; determining a transverse acceleration value that represents a difference between the lateral acceleration value and an acceleration value based on the rotational acceleration value, for an acceleration transverse to the longitudinal axis of the vehicle, and/or determining a longitudinal acceleration value that represents a difference between the longitudinal acceleration value and an acceleration value based on the rotational acceleration value, in the longitudinal direction of the vehicle; and recognition of the type of the impact if the transverse acceleration value and/or the longitudinal acceleration value stands in a predetermined relation to a respective threshold value.
Abstract:
A method of activating a passenger safety arrangement of a vehicle, the method including reading in a roll rate of the vehicle and triggering the passenger safety arrangement when, at a first time, at least one roll rate value is present, which exhibits a positive sign and is larger than a roll rate positive threshold value and when, at a second time after the first time, at least one roll rate value is present, which exhibits a negative sign and is smaller than a roll rate negative threshold value.
Abstract:
The invention relates to a transponder that is mounted on a tire. The transponder includes at least one transponder chip and a transponder antenna and is embedded in a substrate which is connected to an inner side of the tire with the aid of an element. The aim of the invention is to provide a transponder with the highest possible durability. To achieve this, the connecting element is a material strip which is only fixed to the inner side of the tire in one sub-section.
Abstract:
In a method and a system for controlling a safety system for a vehicle, a sensor suite is provided to generate at least one yaw-acceleration signal. An evaluation circuit is used to sample the at least one yaw-acceleration signal with a sampling time of less than 10 ms, and to generate a control signal as a function of the at least one sampled yaw-acceleration signal.
Abstract:
A device and a method for triggering passenger protection systems, the passenger protection systems being triggered as a function of a rollover process. A signal which characterizes a road grip coefficient (coefficient of friction) is received via an interface. An evaluation circuit is provided which triggers the passenger protection systems as a function of the signal and a stability factor, the evaluation circuit determining the stability factor as a function of at least one kinematic variable.
Abstract:
A method and a control device for triggering passenger protection devices for a vehicle are provided, a rollover event causing the triggering of the passenger protection devices. The rollover event is detected as a function of kinematic and rotation variables, an adhesion, and a static stability factor. A state of rotation is ascertained via a rotation rate and a rotation angle. A state of adhesion is ascertained from a vehicle transverse acceleration and a vehicle vertical acceleration. The rollover event is detected via the state of adhesion and the state of rotation, the adhesion being much greater than the static stability factor.
Abstract:
A method for detecting a collision of a vehicle is described, including a step of receiving a linear signal and a rotation signal via an interface, the linear signal containing information about a linear motion, and the rotation signal containing information about a rotational motion of the vehicle. The method also includes a step of supplying an evaluation signal based on the linear signal and the rotation signal, the evaluation signal containing information about the collision.
Abstract:
A method and a control device for triggering passenger protection devices for a vehicle are provided, a rollover event causing the triggering of the passenger protection devices. The rollover event is detected as a function of kinematic and rotation variables, an adhesion, and a static stability factor. A state of rotation is ascertained via a rotation rate and a rotation angle. A state of adhesion is ascertained from a vehicle transverse acceleration and a vehicle vertical acceleration. The rollover event is detected via the state of adhesion and the state of rotation, the adhesion being much greater than the static stability factor.
Abstract:
A control unit and a method for activating an occupant protection arrangement are described, a feature vector having at least two features being formed from at least one signal of a crash sensor system. The occupant protection arrangement is activated by a kernel algorithm as a function of the feature vector or a first partial feature vector. The feature vector or a second partial feature vector is classified by a support vector machine (SVM) and the kernel algorithm is influenced by the classification.