Abstract:
Methods and systems for power optimization of a global navigation satellite system may comprise receiving LEO RF satellite signals utilizing a LEO satellite signal receiver path (LEO Rx) in a wireless communication device (WCD). Circuitry in the LEO Rx may be configured in a powered down state based on a sleep schedule. A location of the wireless communication device may be determined utilizing LEO signals received by the LEO Rx. The sleep schedule may be based on a desired accuracy of the determined location, the relative strengths of signals received from a plurality of LEO satellites, a relevance factor generated by a position engine and communicated to the sort module, or a desired power level of the WCD. The relative strengths of received signals may be compared utilizing a sort module in a LEO demodulator in the LEO satellite signal receiver path.
Abstract:
Methods and structure for masking of logical unit numbers (LUNs) within a switching device coupled with one or more storage enclosures. Each storage enclosure defines one or more logical volumes each identified by a LUN within the storage enclosures. The switching device gathers LUN definition information regarding each LUN defined by each storage enclosure coupled with the switching device. LUN access permission information may be provided by an administrative node/user defining a level of access permitted or denied for each host system for each LUN for each storage enclosure. The switching device then intercepts a REPORT LUNS command from any host directed to a storage enclosure and responds with only those LUNs to which the requesting host system has permitted access. Further, any other SCSI command intercepted at the switching device directed to a LUN to which the host system does not have access is modified to identify an invalid LUN.
Abstract:
Methods and systems for a dual mode global navigation satellite system may comprise selectively enabling a medium Earth orbit (MEO) radio frequency (RF) path and a low Earth orbit (LEO) RF path in a wireless communication device to receive RF satellite signals. The signals may be down-converted to determine a position of the wireless device. The signals may be down-converted utilizing local oscillator signals from a phase locked loop (PLL). The RF paths may be time-division duplexed by the selective enabling of the MEO and LEO paths. Acquisition and tracking modules in the MEO RF path may be blanked when the LEO RF path is enabled. The MEO RF path may be powered down when the LEO RF path is enabled. The signals may be down-converted to an intermediate frequency before down-converting to baseband frequencies or may be down-converted directly to baseband frequencies. In-phase and quadrature signals may be processed.
Abstract:
Detecting a wireless device is disclosed. A situation in a wireless medium is created for the wireless device to transmit. A transmission of the wireless device is received. The wireless device is detected based at least in part on information associated with the received transmission of the wireless device.
Abstract:
A communication is received that includes information regarding a quiet period on a wireless logical channel. During the quiet period, transmissions are refrained from occurring on the wireless logical channel. At least one device performs a process to detect wireless devices, if any, on the wireless logical channel during at least part of the quiet period.
Abstract:
A scoreboard is disclosed comprising a scoreboard body having first player identification indicia, second player identification indicia, and scoring indicia. The scoreboard includes first and second player indicators that are movable for indicating a current score of the first or player. A first detection device for recording manual movement of the first player indicator indicates a score change of the first player, and a second detection device for recording manual movement of the second player indicator indicates a score change of the second player. A master controller is operatively connected to the detection devices, that are configured to send signals to the master controller. The master controller is configured to perform at least one of the following operations: (a) store the current score of each of the first and second players; and (b) transmit the current score of each of the first and second players over a network.
Abstract:
Techniques for executing one or more instances of a computer program using virtual machines, the computer program comprising multiple computer program portions including a first computer program portion. The techniques include determining whether an instance of any of the multiple computer program portions is to be executed; when it is determined that a first instance of the first computer program portion is to be executed, accessing first information specifying a first set of one or more virtual machine resources required for executing the first instance of the first computer program portion; determining whether any one of the plurality of virtual machines has at least the first set of virtual machine resources available; and when it is determined that a first of the plurality of virtual machines has the first set virtual machine resources available, causing the first virtual machine to execute the first instance of the first computer program portion.
Abstract:
Methods and systems for indoor global navigation satellite system detection utilizing low Earth orbit satellite signals may comprise receiving low Earth orbit (LEO) RF satellite signals utilizing a LEO satellite signal receiver path (LEO Rx) in a wireless communication device comprising the LEO satellite signal receiver path and a medium Earth orbit satellite signal receiver path (MEO Rx). A received signal strength indicator (RSSI) may be measured for the received LEO signals and an expected received MEO signal strength may be calculated. A power level of the MEO Rx may be configured based on the calculated MEO signal strength by powering down when the calculated expected MEO signal strength is below a threshold level for MEO positioning purposes and/or powered up when it increases above the threshold level. The RSSI may be measured at a plurality of points along the LEO Rx.
Abstract:
The present disclosure is directed towards systems and methods for supporting Simple Network Management Protocol (SNMP) request operations over clustered networking devices. The system includes a cluster that includes a plurality of intermediary devices and an SNMP agent executing on a first intermediary device of the plurality of intermediary devices. The SNMP agent receives an SNMP GETNEXT request for an entity. Responsive to receipt of the SNMP GETNEXT request, the SNMP agent requests a next entity from each intermediary device of the plurality of intermediary devices of the cluster. To respond to the SNMP request, the SNMP agent selects a lexicographically minimum entity. The SNMP agent may select the lexicographically minimum entity from a plurality of next entities received via responses from each intermediary device of the plurality of intermediary devices.
Abstract:
Methods and systems for an embedded and hosted architecture for a medium Earth orbit satellite and low Earth orbit satellite positioning engine may comprise receiving LEO RF satellite signals and MEO satellite signals in a wireless communication device (WCD) comprising a low Earth orbit (LEO) satellite signal receiver path, a medium Earth orbit (MEO) satellite signal receiver path, and a dual-mode position engine comprising a coarse location module and a fine location module. The received LEO and MEO signals may be demodulated and coarse and fine positions may be determined from the demodulated signals utilizing the dual-mode position engine. A configuration input may be communicated to the position engine, wherein the configuration input comprises an initial position estimate for the WCD. The coarse position may be determined utilizing demodulated LEO signals and/or demodulated MEO signals. The fine position may be determined utilizing demodulated LEO signals and/or demodulated MEO signals.